

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DATA TRANSFORMATION IN A THREE DIMENSIONAL
INTEGRATED CIRCUIT IMPLEMENTATION

by

Dimitrios Megas and Kleber Leandro Pizolato Someira

March 2012

 Thesis Advisor: Ted Huffmire
 Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Data Transformation in a Three Dimensional Integrated
Circuit Implementation

5. FUNDING NUMBERS

6. AUTHOR(S) Dimitrios Megas, Kleber Leandro Pizolato Someira
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Three-dimensional integration is an emerging chip fabrication technique in which multiple integrated circuit dies are
joined using conductive posts. 3D integration offers several performance and security advantages, including
extremely high bandwidth between the two dies and the ability to augment a processor with a separate die housing
custom security features. This thesis performs a feasibility and requirements analysis of a data transformation
coprocessor in a three-dimensional integrated circuit. We propose a novel coprocessor architecture in which one layer
(control layer) houses application-specific coprocessors for cryptography and compression, which provide
acceleration for applications running on a general-purpose processor in another layer (computational layer).
 The main application supported from our proposed 3DIC is the one that performs real-time trace collection,
compresses the trace, and optionally encrypts the compressed trace, which protects the data from interception during
transmission to permanent off-chip storage for offline program analysis.
 Although we are not building a hardware device for simulation we present the architecture for a 3D data
transformation processor and a rationale for each of the key design decisions, including a compression study that
determined the optimal compression algorithm for a specific set of traces.

14. SUBJECT TERMS
Three Dimensional Integrated Circuit, Compression, Cryptography, Coprocessor, Data
Transformation, Control Plane, Computational Plane

15. NUMBER OF
PAGES

225
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DATA TRANSFORMATION IN A THREE DIMENSIONAL INTEGRATED
CIRCUIT IMPLEMENTATION

Dimitrios Megas
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1998

Kleber Leandro Pizolato Someira
Lieutenant Commander, Brazilian Navy
B.S., Brazilian Naval Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2012

Authors: Dimitrios Megas
 Kleber Leandro Pizolato Someira

Approved by: Ted Huffmire

Thesis Advisor

Timothy E. Levin
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Three-dimensional integration is an emerging chip fabrication technique in which

multiple integrated circuit dies are joined using conductive posts. 3D integration offers

several performance and security advantages, including extremely high bandwidth

between the two dies and the ability to augment a processor with a separate die housing

custom security features. This thesis performs a feasibility and requirements analysis of a

data transformation coprocessor in a three-dimensional integrated circuit. We propose a

novel coprocessor architecture in which one layer (control layer) houses application-

specific coprocessors for cryptography and compression, which provide acceleration for

applications running on a general-purpose processor in another layer (computational

layer).

 The main application supported from our proposed 3DIC is the one that performs

real-time trace collection, compresses the trace, and optionally encrypts the compressed

trace, which protects the data from interception during transmission to permanent off-

chip storage for offline program analysis.

 Although we are not building a hardware device for simulation we present the

architecture for a 3D data transformation processor and a rationale for each of the key

design decisions, including a compression study that determined the optimal compression

algorithm for a specific set of traces.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. SCOPE OF THESIS ..7
C. THESIS OUTLINE ..7

II. BACKGROUND ..9
A. INTRODUCTION..9
B. 3D IC TECHNOLOGY ...9

1. Main Technologies for Manufacturing 3DICs11
2. Advantages of 3DIC Technology ..12
3. Challenges of 3D IC technology ..14

C. COPROCESSORS ...14
D. DATA COMPRESSION ...15

1. Compression ...15
2. Dictionary methods ..18

a. Adaptive Dictionary...20
b. Sliding Window Dictionary ...20
c. Circular Queue Dictionary ...21
d. Binary Tree Dictionary ...22

3. Statistical Methods ...22
a. Huffman Coding ...28
b. Adaptive Huffman ...29
c. Arithmetic Coding ...30
d. Adaptive Arithmetic Coding..33

E. CRYPTOGRAPHY ...34
1. Definition of Cryptography, Basic Principles and Description

of General Aspects Related to Cryptography.34
2. Cryptographic Services ...35
3. A Basic Scenario of Cryptographic Application36
4. General Description of Cryptographic Algorithms (Symmetric,

Asymmetric, Hash Functions)...38
a. Symmetric, Private-Key Encryption38
b. Stream and Block Ciphers ..39
c. Public (Asymmetric) Key Encryption40
d. Hashing Functions ...41

III. COMPRESSION ..43
A. INTRODUCTION..43
B. COMPRESSION ..43
C. COMPRESSION ALGORITHMS ...44
D. STRING COMPRESSION ...44
E. DICTIONARY METHODS ..44

1. Lempel Ziv ..44

 viii

2. LZ77 ..45
3. LZR ...45
4. LZSS ..46
5. LZB..47
6. GZIP ..48
7. LZ78 ..51
8. LZW ..52
9. LZC (UNIX Compress) ...54
10. LZT..54
11. LZMW ..55
12. LZFG ...55
13. ALDC ..56
14. Dictionary Summary ...57

F. STATISTICAL METHODS ...57
1. Prediction ..57
2. PPM ...58
3. PPMA ..59
4. PPMB ..59
5. PPMC ..59
6. VPC3 ...59
7. TCgen ..64

G. FURTHER DISCUSSION...65
1. Combining ..65
2. Data-Compression Patents ..65
3. Trace Compression ..66

H. 2D COMPRESSION HARDWARE ...68
1. Parallel Dictionary LZW Plus Adaptive Huffman [27]..................68
2. X-MatchPRO [28]. ...69
3. Branch-Predictor Compression Plus Variable-Length Code

[29] ...70
4. Stream-Based Compression (SBC) [30], [31]72
5. Reduction, Encoding Plus LZ [47] ...74
6. IBM/AHA [40][41] ...76

I. USAGE SCENARIOS ...78
J. PERFORMANCE NUMBERS ...80

IV. CRYPTOGRAPHY ...83
A. INTRODUCTION..83
B. DESCRIPTION OF A CRYPTOGRAPHIC COPROCESSOR83
C. THE HSSEC HIGH-SPEED CRYPTOGRAPHIC COPROCESSOR84

1. SHA-1 algorithm ..85
2. SHA-512 algorithm ..85
3. AES-128 algorithm...86

a. AES-128 Transformations ..86
b. AES-128 Key Expansion Process ...92

 ix

c. Electronic Codebook (ECB) and Cipher Block Chaining
(CBC) Modes ...93

4. The HSSec High-Speed Cryptographic Coprocessor
Architecture ..96

5. Use Scenario ...100
6. Cryptographic Algorithm Performance ..101

a. SHA-1 and SHA-512 Performance102
b. AES-128 Performance ..109

V. 3D INTEGRATED CIRCUIT ARCHITECTURE ...117
A. INTRODUCTION..117
B. FACTORS IN 3D ARCHITECTURE ...118

1. Bonding: Interconnection Methods ..118
2. Manufacturing Methods ..122

a. Face-to-Face Bonding ..123
b. Face-to-Back Bonding ..124

C. FLOORPLAN, POWER, AND GROUND NETWORK..........................124
D. MEMORY ..126
E. THERMAL ...128
F. TEST ...133

VI. THE IDEAL 3D SYSTEM ..141
A. INTRODUCTION..141
B. OPTIONS FOR STRAWMAN-DESIGN COMPUTATIONAL

PLANE ..143
1. Performance ...143
2. Traces ..144

C. CONTROL PLANE REQUIREMENTS ...146
D. INTERFACE REQUIREMENTS ..147

1. Query/Control Signals ...147
2. Clock Signals ..152

E. COMPRESSION HARDWARE PARAMETERS152
F. CRYPTO PARAMETERS ..156

VII. RESULTS SUMMARY ...159
A. SUMMARY ..159
B. CONCLUSIONS ..159
C. ANALYTICAL RESULTS SUMMARY ...160
D. FUTURE WORK ...169

APPENDIX A DESCRIPTION OF SHA-1 BASED ON THE FEDERAL
INFORMATION PROCESSING STANDARDS PUBLICATION 180-2171
A. OPERATIONS ...171
B. PREPROCESSING..172

1. Padding the Message..172
2. Parsing the Padded Message ...172
3. Setting the Initial Hash Value () ...172 (0)H

 x

C. SHA-1 ..173
1. SHA-1 Preprocessing ...173
2. SHA-1 Hash Computation ..173

APPENDIX B DESCRIPTION OF SHA-512 BASED ON THE FEDERAL
INFORMATION PROCESSING STANDARDS PUBLICATION 180-2177
A. OPERATIONS ...177
B. PREPROCESSING..178

1. Padding the Message..178
2. Parsing the Padded Message ...178
3. Setting the Initial Hash Value () ...179

C. SHA-512 ..179
1. SHA-512 Preprocessing ...179
2. SHA-512 Hash Computation ..180

LIST OF REFERENCES ..183

INITIAL DISTRIBUTION LIST ...193

(0)H

 xi

LIST OF FIGURES

Figure 1. Block diagram of proposed system, showing the traces of a processor's
execution in the CPU layer being sent to a compression device in a
different layer, then being encrypted for transferral to an external analysis
device. The only trusted devices are the coprocessor layer and the
analyzer. ...4

Figure 2. Comparison of three design paradigms. The horizontal axis represents
time. Arrow width represents data-transfer capacity: a) coprocessor
architecture ("off-chip;" bus capacity together with wire length and
corresponding latency are the bottlenecks of this architecture), b) on-chip
architecture (although the data capacity is high, the internal bus delay
reduces the speed of the system), and c) 3DIC proposed architecture. For
the latter, data that is written to the processor registers and sent via direct
links to the compression registers. The collection of trace data can be
turned to operate in parallel with their execution. This implementation
eliminates latency associated with operation of the bus. A 3D architecture
also provides shorter wire length and reduces the corresponding latency
due to spatial locality enabled by stacking. ...5

Figure 3. Application Trend of 3D Silicon Integration (After [10]). We note the
rapid increase of 3D technology within a small period of time
(approximately two years) in conjunction with a significant reduction of
the interconnect-via size, from 50μm to less than 2μm. This is important
because reducing via size also reduces wire length and, consequently, the
thermal effects of a 3DIC. ..10

Figure 4. A three dimensional (3D) structure (From [17]). Two dies are joined
together using face-to-face bonding. The die-to-die vias connect the two
dies together. Through-silicon vias (TSVs) serve two purposes: (1) they
provide interconnection between the C4 I/O bumps and the active region
of die; and (2) they satisfy power-delivery requirements. A heat sink is
used for the dissipation of the heat. ...11

Figure 5. Bonding orientation (From [6]). This figure shows face-to-face and face-
to-back bonding. Depending on the position of the metal layers of the
upper die relative to those of the lower die, the bonding process is referred
to as either face-to-face, where the metal layers of the layers face each
other, or face-to-back, where the bulk silicon of the upper die faces the
metal layers of the lower die. ...12

Figure 6. Reduction of length wiring by a factor of the square root of the number of
layers in three dimensions (After [11]). For a 3DIC with four layers, the
average reduction of the length wiring is a factor of two.13

Figure 7. Here we present the difference in length of using a fixed-length code
versus a variable-length code to represent a simple text message. In the
first row, we have a text message as it appears to the user; in the second
row, the way it appears to the computer if using ASCII fixed-length

 xii

representation; in the third row we represent it using an arbitrary fixed-
length code specific to a four-character alphabet, to reduce the string
length; and in the last row, we replace the character that appears most (L
in this case) by the fewest possible number of bits (0 in this case). Then
we look for the second most-used character. Since all the remaining
characters appear only once, we just assign them a different code.15

Figure 8. We present the difference in length using a fixed-length code or variable-
length code to represent a grayscale image. ...16

Figure 9. Here we present the difference in the string length by using a run-length
method to represent an image with repeated colors. ..17

Figure 10. We present the dictionary method with just one match. At first it seems
that no compression can be achieved, but as the dictionary fills up, more
matches occur. The methods differ in the way they handle the filling
process and how they manage the dictionary when it is full and more new
data is found. ..19

Figure 11. Using the compressed string from Figure 10, we present the
decompression phase. We assume that the algorithm can figure out if the
input data is compressed or not. If it’s not compressed, the data is output
and written to the dictionary as is; otherwise the algorithm interprets it as a
pointer and outputs the pointer’s content. ..20

Figure 12. We present a different implementation of a dictionary in a sliding window;
this shows how algorithms vary based on the implementation of the same
principles (After [9]). As an example of how to consider the method based
on the kind of data we are compressing, this method compares the input
string only to the sliding window, not the full data previously seen, so we
assume our data will repeat sooner. ...21

Figure 13. Before presenting the overall compression process, we show the
probability table (in percentage): the representation of an algorithm that,
based in the previously seen symbol, having learned about the data (by
copying to the table the previously seen symbol and actual following
symbols and counting how many times they appear), can guess the most-
probable next symbol. If the guess matches the actual symbol we have a
hit, and the output is the smallest possible data (“1” in our example). If the
guess doesn’t match the actual symbol, the algorithm outputs a miss
symbol (“0” in our example), followed by the actual symbol.23

Figure 14. Learning phase: Unlike the dictionary method, the prediction is slow to
learn about data, and, as we can see, augments the output string during this
phase, adding the miss symbol “0” plus the actual data. After this learning
phase, the final compression is better in terms of compression ratio than
the dictionary-based method. ...24

Figure 15. After the learning phase, suppose the string continues and after “HELLO”
we see “HELL;” the table is still being updated with new probabilities, but
now that the algorithm has enough knowledge about our data, more hits
are generated. Therefore, the compression ratio increases, and just 11 bits
are output from a 28-bit input, almost a 3:1 compression ratio. Note that

 xiii

the symbol “L” appears for the third time after another “L” and changes
the probability of symbols after “L” from 50% of ”L” and 50% of “O” to
66% of “L” and 33% of “O”. ...25

Figure 16. The probability table is empty, and a new learning phase will start for
decompressing the string. Every time the algorithm sees a “0,” it will
output the data that follows and write the data into the table, calculating
the appropriate probability. ..26

Figure 17. Continuing the decompression after the learning phase: The table is still
being updated with new probabilities, but now the algorithm has enough
knowledge about our data to decompress a one-bit symbol with total
precision. Note that to decompress the second “L,” if we had a hit before
the algorithm could guess “L” or “O” because both had the same
probability of 50%, from now on the algorithm will correctly predict “L”
because “L” has greater probability (66% against 33%).27

Figure 18. Huffman code for the 26-letter alphabet. The algorithm orders the symbols
by their frequency in English text and allocates the positions in the tree
with a smaller code assigned to the most frequent symbols.28

Figure 19. Base Table for Arithmetic coding of “HELLO.” The input string
“HELLO” is read, and a probability is assigned to each symbol. Then
LOW, RANGE, and HIGH values are calculated for each symbol, where
RANGE = HIGH–LOW. Starting with symbol “H,” LOW=0,
RANGE=0.2, and HIGH=0.2. For symbol “E,” LOW=0.2, RANGE=0.2,
and HIGH=0.4, and so on. ...30

Figure 20. After the first interaction with the formulas for letter H, new probabilities
are assigned to each symbol, inside the range from the previous
interaction. The LOW, RANGE, and HIGH values are calculated again for
each symbol. Starting with symbol “H”, LOW=0, RANGE=0.04, and
HIGH=0.04; for symbol “E”, LOW=0.04, RANGE= 0.04, and
HIGH=0.08, and so on. ..31

Figure 21. Secret writing, the process by which plaintext is transformed into
ciphertext (After [20]). Transforming plaintext to ciphertext is called
encryption, while the reverse is called decryption. A key is required to
encrypt or decrypt. ...35

Figure 22. Fundamental Communication Scenario for Cryptography (After [19]). The
two entities, Alice and Bob, want to communicate with each other. For
Alice to send a message to Bob without Eve’s access, she uses an
encryption key to encrypt her message (plaintext). Bob receives the
encrypted message (ciphertext), and decrypts it with a decryption key.37

Figure 23. Symmetric key encryption (After [19]). The two entities that want to
establish a communication session have already exchange shared a
common secret key. The sender encrypts the plaintext with the common
secret key, and the receiver decrypts it with the common secret key that he
has on his possession in order to access the received message (ciphertext). ...39

Figure 24. Asymmetric-key encryption (After [19]). Asymmetric cryptography uses a
different key for encryption and decryption. Each entity (Alice and Bob)

 xiv

must have two keys, one private and one public. Both sender and receiver
keep their secret key secret and allow their public keys to be distributed. In
order for the sender and receiver to communicate, the sender (Alice) must
encrypt the message with the receiver (Bob’s) public key. To decrypt the
received message, the receiver must use his private key. The public and
private keys of each entity are related but unequal. ...41

Figure 25. This graph shows the lengths of the Elias gamma code and the standard
variable length binary (beta) code, comparing them and showing the
advantage of Elias gamma codes for small numbers n (From [9]).48

Figure 26. In the length pre-code table (a), codes from 257 to 285 are used to
represent lengths; these pre-codes are used as references to the length-code
table (b), which will convert them to the actual output-code bits. Table (c)
shows the five-bit, fixed-length codes and extra bits used to represent all
32,768 possible offsets (After [9]). ..50

Figure 27. Implementation of the LZ78 tree (From [9]). Each new symbol is
appended to the tree as a child of the string to which it belongs. For
example, in the new string silo, the algorithm matches sil, outputs (1, o) (a
pointer to the beginning of the string, new value), and o is appended as a
child of 13-l. ...52

Figure 28. LZW Encoder. The string hellohell is read: the first symbol h is preloaded
into the dictionary, resulting in a match. The next symbol is e, and the
encoder tries to find a match for the concatenation he (the longest match)
but fails; therefore, it outputs the address for h. Since the concatenated
string he is a new string, the encoder also stores this string at a new
address (257) provided by a hash function; the values stored are its
parent’s location (h=104) and the new value added (e in this case). The
algorithm always tries to find the longest match; therefore, when the
algorithm inputs the second h, it also inputs the second e as before and
tries to find a match for he. Now that he is stored, the algorithm also tries
the three-symbol string hel but fails to find a match. Therefore, after
failing to match order three, the algorithm returns to order two and outputs
this location (257). ...53

Figure 29. LZW Decoder. The first token (104) is read, and the output of this address
(h) is the first symbol. The process continues with the next token (101),
which results in a new symbol (e), but now it also stores the concatenation
(he) of the previous two symbols in the dictionary (257). Like the encoder,
when the decoder reads the token 257, the dictionary already contains its
value: (104, e) -> (h, e) -> he. The output is the concatenation of the two-
symbol columns. ..54

Figure 30. The compression of string hellohell is shown. For the first three symbols
h, e, and l, there is no match, so they are output as literals. For the fourth
symbol, l, there is a match returning one position and reading one symbol,
so it is output as a (token, 1, 1). When the next tokens count back for a
match, all previous symbols are included in the count, even the symbols
represented by previous tokens. ...56

 xv

Figure 31. LV[n] predictor with s lines (After [39]). ..61
Figure 32. ST[n] predictor with s lines (After [39]). The first column is the last-seen

value, and all others are differences from it. ..62
Figure 33. FCMx[n] predictor with L1 = s and L2 = t (After [39]).63
Figure 34. DFCMx[n] predictor with L1 = s and L2 = t (After [39]).63
Figure 35. Hardware proposal of Parallel Dictionary LZW plus adaptive Huffman

showing the four variable-length dictionaries on the left for word lengths
from five to two, and the adaptive Huffman priority queue on right (From
[27])..69

Figure 36. Hardware proposal of X-MatchPRO, showing at the far left the dictionary
CAM, and at the center the Huffman coder (From [28]).70

Figure 37. Branch-predictor compression plus variable length code (From [29]). This
figure shows the host machine with the hardware model at the top, and the
software in the analysis machine at the bottom. ..72

Figure 38. Stream-Based Compression (From [30], [31]). The compression is divided
into instruction and data-address compression, generating two output files
that can be further compressed using a dictionary method. Instruction
address compression (left) is divided into address (SA) and length (SL),
which are compared with cached values. If a match occurs, a hit flag is
output. In data-address compression (right), input data is compared with
cached data. If the strides remain the same, a hit flag is output.74

Figure 39. Phase one (From [47]). The hardware inputs all traces and outputs just the
target and branch examples. ...75

Figure 40. Phase two (From [47]). The hardware inputs just the target and branch
addresses. For the target address it outputs the comparison that differs
from the previous target address sliced chunk-by-chunk, and for the
branch it outputs the difference from the respective target address.76

Figure 41. The AHA-ALDC hardware is implemented using a series of 2MB
registers in the processor interface, two sixteen-byte FIFO buffers in the
interfaces to ports A and B, a 512-byte CAM for the ALDC compression
dictionary and a 512-byte RAM for the ALDC decompression dictionary.
The device is 28 x 28 x 3.8 mm, and the coprocessor achieves a
compression ratio of 3:1 and a speed of 40 MB/s (From [41]).78

Figure 42. An AES state (From [66]). The first byte of the block resides in the upper-
left corner of the matrix; remaining bytes fill out the rest of the matrix.
The AES algorithm transforms a plaintext block to a ciphertext block. The
intermediate values of the block are states, and the final value of the block
is the ciphertext. ...87

Figure 43. SubBytes() applies the S-box to each byte of the state (From [66]). Each
byte of the input state is replaced using the same substitution table (S-
box). ...88

Figure 44. ShiftRows() cyclically shifts the last three rows in the state (From [66]).
For instance, row one contains elements S1,0 - S1,1 - S1,2 - S1,3; after the
ShiftRows() transformation, row one is rotated by one position to the left.
The first row, r = 0, is not shifted. ...89

 xvi

Figure 45. MixColumns() operates on the state column-by-column (From [66]). This
transformation maps between columns of the input and output states.90

Figure 46. The operation of the AES-128 algorithm, where Nr = 10 for cipher keys of
length 128bits (From [65], [68]). Each round uses a round key derived
from the original key (the round-zero key). Each round starts with an input
of 128 bits and produces an output of 128 bits. First, it performs
AddRoundKey, using the original key (the round-zero key). Next, for each
of the first nine rounds, it performs SubBytes on the state using a
substitution table (S-box). Then, it performs ShiftRows on state, followed
by MixColumns and AddRoundKey. Finally, during the tenth round it
performs SubBytes, ShiftRows, and AddRoundKey using the tenth round
key. The ciphertext is the 128-bit output block. ..91

Figure 47. Mapping of the key words to round keys (From [69]).92
Figure 48. ECB mode operation (From [70]). For a given sequence of

plaintext/ciphertext blocks, each block is encrypted/decrypted with the
same key, resulting in a string of ciphertext/plaintext blocks.94

Figure 49. CBC mode (From [70]). In CBC encryption, the first input block is formed
by taking the “xor” of the initial block of the plaintext with the IV. The
result of the XOR is enciphered, resulting in the first block of the
ciphertext. In CBC decryption, in order to decrypt any plaintext block
(aside from the first), the inverse cipher function is applied to the
corresponding ciphertext block, and the resulting block is XORed with the
previous ciphertext block. ..96

Figure 50. Main architecture of HSSec cryptographic coprocessor (From [62]). The
control unit manages data processing and communication with the outside
world. Cryptographic primitives (AES-128, SHA-1, and SHA-512) are
arranged in a parallel orientation and use a common 64-bit global data bus.
The key-scheduler block is used for key expansion and generating
message schedules. The memory block consists of a register file, padding
unit, and S boxes. The mode interface is responsible for modifying the
input to the cryptographic primitives. The key scheduler performs the
RotWord and SubWord transformations described above. The key
scheduler also provides constants needed by the hash functions: SHA-1
uses a sequence of eighty, constant 32-bit words, and SHA-512 uses a
sequence of eighty, constant 64-bit words. ..98

Figure 51. Organization of the memory block (From [62]). The memory block
consists of three main parts. The first part is a set of registers used for
storage of the initialization values required by the three cryptographic
algorithms. The second part is a general-purpose register file used for
storing temporary values that can be accessed quickly. The third part is the
padding unit. ..99

Figure 52. Encryption rate in MB per sec for SHA-1, SHA-256, and SHA-512 (From
[74]). SHA-1 has the largest encryption rate, followed by SHA-256 and
SHA-512. ...102

 xvii

Figure 53. Number of cycles per byte for SHA-1, SHA-256, SHA-512 (From [74]).
SHA-1 has the smallest number of cycles, followed by SHA-256 and
SHA-512. ...103

Figure 54. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of 4
KB: requests per second (RPS) and response time. All three algorithms
have nearly the same performance, with SHA-512 being slightly slower.104

Figure 55. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of
135 KB: Requests per second (RPS) and response time. As the data size
increases to 135 KB, there are more variations in the speed. For five users,
as SHA-512 is almost 55% slower than SHA-1, and SHA-1 is almost 33%
slower than MD5..105

Figure 56. Hash algorithms (From [75]). MD5, SHA-1, and SHA-512 for a data size
of 1MB: requests per second (RPS) and response time. As the data size
increases to 1 MB, there are more variations in speed. For five users,
SHA-1 is almost 72% faster than SHA-512. ...106

Figure 57. Performance of the SHA family of algorithms on an AMD 64 system
(From [77]). For SHA-1, hashing one byte requires nearly 672 machine
cycles, while SHA-512 requires 1939 cycles. Thus, SHA-1 is faster than
SHA-512. Increasing the data length decreases the difference in speed, but
SHA-1 is faster than SHA-512 in all cases. ...107

Figure 58. Speed of the SHA family of algorithms on an Intel P3 system (From [77]).
SHA-1 requires nearly 1401 machine cycles to hash one byte, while SHA-
512 requires 23653 cycles. Thus, SHA-1 is faster than SHA-512.
Increasing the data length increases the difference in speed, but SHA-1 is
faster compared to SHA-512 in all cases. ..108

Figure 59. Number of cycles per byte for various combinations of AES key lengths
and block cipher modes (From [74]). AES-128 for every mode is faster
than AES-192 and AES-256. AES/CTR mode (128-bit key) is the fastest
combination. All other combinations have performances ranging from
15.4 to 18.9 cycles per byte. The slowest combination is AES/CBC (256-
bit key). ..110

Figure 60. Encryption rate in MB/sec for various combinations of AES key lengths
and block cipher modes (From [74]). AES-128 for every mode is faster
than AES-192 and AES-256. AES/CTR mode (128-bit key) is the fastest
combination, with an encryption rate of 139 MB/sec. The slowest
combination is AES/CBC (256 – bit key)..111

Figure 61. Time required for AES-128, AES-192, and AES-256 to encrypt 256Mb of
data (From [78]). AES-128 requires the least time (4,196 sec) and AES-
256 requires the most time (5,308). ...112

Figure 62. Encryption rate for AES-128, AES-192, and AES-256 to encrypt 256MB
of data (From [78]). AES-128 has the largest encryption rate (61.01
MB/sec), and AES-256 has the smallest (48.229 MB/sec).113

Figure 63. CPU time and encryption rate for AES-128, AES-192, and AES-256 to
encrypt 256MB of data (From [78]). AES-128 has the highest encryption
rate and the shortest time and is faster than AES-192 and AES-256.............113

 xviii

Figure 64. Battery consumption (%) for different AES key lengths (From [79]). AES-
128 has the smallest power consumption, while AES-256 consumes the
most power. ..115

Figure 65. Power consumption of AES-128, AES-192, and AES-256 in key setup
phase and in conjunction with electronic codebook (ECB), cipher-block
chaining (CBC), cipher feedback (CFB), and output feedback (OFB)
modes (From [80]). AES-128 has the lowest power consumption for the
key setup phase and for all block cipher modes. Also, CFB mode has the
highest energy consumption of any AES operation mode, while ECB has
the lowest. ..116

Figure 66. Cross-sectional view of the die-to-die interface for face-to-face and face-
to-back bonding arrangements (From [6]). According to the position of the
metal layers of the upper die relative to those of the lower die, the bonding
process is either face-to-face, where the metal layers of the two die face
each other, or face-to-back, where the metal layers of the lower tie touch
the bulk silicon of the upper die [6]. ..120

Figure 67. Illustration of Vertical Interconnect Technologies (From [81]). Wire
bonding (top left): wires connect each die in a stack. Micro bumps (top
middle and top right): solder or gold bumps, placed on the surface of the
die provide the required connections. Contactless (middle row): involves
the use of capacitive (middle left) or inductive (middle right) coupling for
communication between layers, Through-silicon via (TSVs) (bottom row):
Short vertical wires between layers of interconnect, used to connect the
planar wires. Their size varies from 50 μm to 1μm. With the
implementation of silicon-on-insulator (SOI) technology (bottom right),
the pitch of vias reduced to 0.2 μm x 0.2 μm. ..121

Figure 68. Fabrication steps for face-to-face bonding (From [6]).123
Figure 69. Fabrication steps for face to back bonding (From [6]).124
Figure 70. Implementing a cache in 3D (From [6]). (a) A baseline 2D processor with

L2 cache; (b) an L2 cache stacked above the cores; (c) L2 cache banks
stacked on each other. In Figure (1)(c), each bank can be the same as it is
in a conventional 2DIC, but in the case of a 3DIC, the banks are stacked.
The advantage is that the global routing can be reduced significantly. The
bold black arrow in each subfigure illustrates the reduction in
interconnection length. ...128

Figure 71. Memory-stacking options (After [17]): (a) 4MB baseline; (b) 8MB
stacked, for a total of 12MB, with an increase of the L2 size from 8MB to
12MB of static random-access memory (SRAM); (c) 32MB of stacked
DRAM with no SRAM, replacing the L2 SRAM with a larger L2 dynamic
random-access memory (DRAM), thus replacing the 4MB L2 with a
32MB stacked L2 DRAM; and (d) stacking a 64MB DRAM on top of the
base processor. ...129

Figure 72. Temperature results for the stacked 12MB, 32MB, and 64MB memory
options compared to the baseline 4MB (After [17]). The thermal impact of
stacking memory is slightly greater than 2DICs. ...130

 xix

Figure 73. Thermal Profile of the Planar Processor (From [94]).132
Figure 74. Thermal Profile of the Two-Die, 3D Processor (From [94]).133
Figure 75. Thermal Profile of the four-die, 3D Processor (From [94])...........................133
Figure 76. A) The role of 3DIC testing in the development process. B) status of 3DIC

research (From [102]). ...134
Figure 77. Approach One (From [104]). Two independent scan chains tied together

by only one TSV. ...136
Figure 78. Approach Two (From [104]). All testing points are projected onto just one

layer, and a 2D chain tool computes the scan-chain path.137
Figure 79. Approach Three (From [104]). This is a true 3D approach in which the

tool computes the optimal path, considering horizontal and vertical
distances. ..137

Figure 80. A visual representation of the ILP specification inserted to Xpress-MP.139
Figure 81. The proposed architecture consists mainly of a two-layer IC, with

computational and compression-encryption planes stacked face to face
(allowing the smallest possible distance between the layers), allowing
information to flow from the computational to the compression-encryption
plane (control plane) as fast as possible. Die-to-die communication is
achieved using micro bumps that provide an enhanced vertical
interconnection density and smaller distance, as compared to the wire-
bonded method. ..142

Figure 82. First, the compression coprocessor is placed in the control plane, followed
by the cryptographic coprocessor. ...143

Figure 83. Layout of the computational plane, showing the control unit, memory
address register, cache memory, clock unit, I/O interface, and I/O
controller to handle I/O requirements for both planes.146

Figure 84. The query and control signals are managed by a microprocessor interface
in the control plane; this interface receives a clock signal, read/write
signal, address/data byte, and has externally accessible registers to
receive/send the signals. The proposed registers are error, status, interrupt,
command, and reset. ..148

Figure 85. One: the microprocessor sends a write request (control). Two: the
interface sends back an “Ack” signal to the microprocessor and the two
coprocessors. Three: the interface reads the register address and opens the
connection to this register. Four: data is written into the register to be read
by the coprocessors. Each coprocessor will read and interpret the signal in
the respective I/O interface. ...150

Figure 86. One: the microprocessor sends a read request (query). Two: the interface
sends back an “Ack” signal to the microprocessor. Three: the interface
reads the register address and opens the connection to this register. Four:
data is read from the register by the microprocessor.151

Figure 87. The stream is initially compressed using an LZ77 algorithm “which
produces flags, literals, match distances and match lengths (After [114]).
The literals and match lengths {0,….,285} are encoded by one Huffman
tree, and the match distances {0,. . . ,29} are encoded with separate

 xx

Huffman trees: the dynamic, literal-length Huffman tree (DLLHT) and the
dynamic, offset Huffman tree (DOHT), or the static, literal-length
Huffman tree (SLLHT) and the static, offset Huffman tree (SOHT). Once
the two dynamic Huffman trees have been created, GZIP determines
whether compressing the block of data with dynamic or static Huffman
trees will produce a higher compression ratio. If dynamic Huffman
compression is beneficial, then a representation of the DLLHT and the
DOHT must occur at the beginning of the block to be able to reconstruct
the Huffman trees for decompression purposes, and a third dynamic
Huffman tree (second-stage Huffman) needs to be created with the
alphabet {0,. . . ,18} to compress the output of DLLHT and DDHT trees.
If a static Huffman tree was used, it is not necessary to output any tree
since the decompressor has access to the static codes” [114].154

Figure 88. Traces arrive at the compression coprocessor via a FIFO input buffer. All
128 bits are received in parallel for speed reasons. They are received on
the first clock signal after a “start compression” signal is received. Each
trace is then sent to different DFCM compression hardware to be
transformed into streams. All DFCM compressors share the same CAM,
which is divided virtually among them. DFCM predicts the trace based on
context and strides. Those predictions are sent to comparison hardware
that compares it with the actual data being processed. If a match occurs,
the address of the prediction is output to the stream. Otherwise, the
uncompressed trace is output together with a miss flag. Predicted and non-
predicted traces are combined into a single stream that is input to the GZIP
hardware. After being compressed, traces are sliced into 32-bit chunks and
sent to the crypto coprocessor. ...156

Figure 89. The cryptographic coprocessor architecture utilized for the 3DIC (After
[62])..157

Figure 90. Block diagram showing the integration of the computation plane,
microprocessor interface, compression unit, and cryptographic unit into a
full system ..158

Figure 91. Program Counter: The DFCM1[n] algorithm is the best algorithm for this
specific field, especially when n is greater than five, with 70% good
predictions. If memory is a concern, the best algorithm is DFCM1[n] with
n equal to one, with 53.6% good predictions. This result confirms our
design choice of DFCM, with a performance of, at most, 70% good
predictions. ...164

Figure 92. Data Address: The FCM1[n] is the best algorithm for this specific field.
The best result is when n is equal to four, with 46% good predictions. This
result shows that data addresses do not have fixed stride and the
differential property of DFCM is not contributing. Therefore, we
recommend using a FCM algorithm for data addresses, with a
performance of, at most, 46% good predictions. ...165

Figure 93. (Upper) Program Counter: The mean compression ratio for the five
program traces, showing that our two-stage proposal (DFCM + GZIP) has

 xxi

a slight advantage over a single GZIP stage. (Lower) Data Address: The
poor percentage of good predictions in field two reflects in the poor
compression ratio in field two for our proposed design. The first stage’s
algorithm has to be carefully chosen in order to achieve a better
compression ratio. ..168

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

LIST OF TABLES

Table 1. Block Ciphers mode operation summary (From [23]).40
Table 2. Performance figures from the literature on some of the presented

algorithms: compression ratio and memory required for compressing the
same data as a means of comparison (From [26]). ..80

Table 3. This table summarizes performance figures from hardware
implementations in the published literature (From [28]). The figures are
organized in descending order of compression ratio and throughput81

Table 4. Like Table 3, this table summarizes compression ratios and memory
requirements of some of the algorithms presented for compressing the
same data as a means of comparison (From [26]). ..81

Table 5. Key–Block–Round Combinations (From [66]). ..86
Table 6. Control signals of the HSSec cryptographic coprocessor (After [62]).100
Table 7. Encryption rate in MB per sec and cycles per byte for SHA-1, SHA-256,

and SHA-512 (From [74]). ..102
Table 8. Cycles per byte for the family of SHA algorithms on an AMD 64 system

(From [77])...107
Table 9. Cycles per byte for the SHA family of algorithms on an Intel P3 system

(From [77])...108
Table 10. Encryption rate in MB per sec and cycles per byte for AES-128, AES-192,

and AES-256 in conjunction with electronic codebook (ECB), cipher-
block chaining (CBC), cipher feedback (CFB), output feedback (OFB),
and counter (CTR) modes (From [74]). ...109

Table 11. Performance of AES-128, AES-192, and AES-256 to process 256 MB of
data in terms of CPU time and the encryption rate in MB/sec (From [78]). .112

Table 12. Battery consumption for AES for different key lengths (From [79]).114
Table 13. Energy consumption of various combinations of AES block cipher modes

and key sizes, From [80]. ...116
Table 14. Control / Query signals ..149
Table 15. Table used to collect the percentage of good predictions made by different

algorithms: differential finite-context-method (DFCMx[n]), finite-context-
method predictor (FCMx[n]), stride predictor (ST[n]), and last n values
predictor (LV[n]), varying x and n from 1 to 7. ...162

Table 16. The methodology of trace compression and analysis was applied to each
of the two fields of each of the five program traces. Then the results from
the same fields of different program traces were combined and the mean
was calculated, resulting in one performance graph for each field.163

Table 17. The resulting output of the first phase for each program trace was then
sent to the second compression stage, based on GZIP, and the final
compression ratio was compared against a single compression stage,
consisting only of GZIP. ..166

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xxv

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

3DIC Three-Dimensional Integrated Circuit

ABYSS A Basic Yorktown Security System

AES Advanced Encrypted Standard

ALU Arithmetic Logic Unit

ASCII American Standard Code for Information Interchange

ATUM Address Tracing Using Microcode

AVIRIS Airborne Vehicle, Infrared-Imaging Spectrometer

BTA Branch-Target Address

BYU Brigham Young University

CAM Content-Address Memory

CBC Cipher-Block Chaining

CFB Cipher Feedback

CMP Chemical–Mechanical Polishing

CPU Central-Processor Unit

CTID Core Thread Identification

CTR Counter

d2d Die to Die

DASC Data-Address Stride Cache

DES Data-Encryption Standard

DFCM Differential-Finite Context Method

DFT Design for Testability

 xxvi

DH Diffie – Hellman

DLLHT Dynamic – Literal Length Huffman Tree

DOHT Dynamic – Offset Huffman Tree

DRAM Dynamic, Random-Access Memory

ECB Electronic Code Book

ECC Elliptical Curve Cryptography

ETA Exception-Handler Target Address

FCM Finite Context Method

FIFO First In, First Out

GA Genetic Algorithm

GB Giga Byte

HTML Hypertext Markup Language

I/O Input/Output

IC Integrated Circuit

ILP Integer Linear Programming

ISA Instruction-Set Architectures

L Length

LV Last Value

MB Mega Byte

MD Message Digest

MLBS Multilayer Buried Structure

MTF Move to Front

NIST National Institute of Standards and Technology

OFB Output Feedback

PC Program Counter

 xxvii

PDA Personal Digital Assistant

RAM Random-Access Memory

RLE Run-Length Encoding

ROM Read-Only Memory

RSA Rivest – Shamir – Adleman

SA Simulated Annealing

SA Starting Address

SBC Stream-Based Compression

SC Sequential Counting

SHA Secure-Hash Algorithm

SL Stream Length

SLLHT Static – Literal Length Huffman Tree

SOHT Static – Offset Huffman Tree

SoC System on Chip

SRAM Static, Random-Access Memory

TA Target Address

TAM Test Access Mechanism

TLB Translation Look-Aside Buffer

TRM Tamper-Resistant Modules

TSV Through-Silicon Via

UD Uniquely Decipherable

VDC Volts of Direct Current

 xxviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxix

ACKNOWLEDGMENTS

 The authors would like to express their sincere appreciation to the people listed

below who have provided support and advice, and who made this thesis possible. They

were there from its initial concept to its published reality.

From LT Dimitrios Megas H.N:

 I would like to express my thanks to Professor Ted Huffmire and Mr Timothy

Levin, my thesis advisors. Thank you for the constructive critiques, and helping me put

my thoughts on paper. Your support and guidance throughout this process truly made my

research a valuable experience. In order to express my gratitude to them I would like to

share with them a quote by one of my ancestors:

 “I am indebted to my father for living, but to my teacher for living well.”

– Alexander the Great

 I would like to thank from my deepest of my heart my thesis partner and great

friend Kleber. His friendship is definitely one of the greatest gifts I earned here. I am

wishing you all the luck and success both professional and personal.

 I would also like to thank Hellenic Navy for providing me the opportunity to

pursue my studies here in Monterey, and Greek taxpayers, especially this specific period

for my country, without their sacrifices my studies would not be possible.

 I have to thank my parents, my father Lampros, my mother Vasiliki, and my sister

Eleni for everything they have done for me so far.

 Last but not least I would like to thank my wife Vasiliki for her endless love and

support. Thank you for persuading me to strive for excellence. This thesis is dedicated to

my precious daughter Erato, my inspiration to my whole life, and to my beloved wife

Vasilki.

From LCDR Kleber Pizolato, Brazilian Navy:

 I would like to recognize Professors Ted Huffmire and Timothy Levin, for the

guidance through this research work, always pointing the right direction to follow, and

 xxx

making constructive comments. My belief in their solid knowledge made me improve the

quality of this research. Not only for their orientation, but for the friendly relationship we

developed, I give not only my acknowledgements, but also my Brazilian friendship.

 Friendship is not enough to define the relation with my partner Dimitrios, for his

contribution to my life during this period I will be always remember him as a brother.

Wish you and your family the best in your lives.

 Thanks to my Country and the Brazilian Navy for believing in my work and give

me the opportunity to enhance my knowledge trough my studies.

 I have to thank my parents Waldomiro and Neuza for the gift of life and for solid

education. To my sister Kleisse, her friendship and persistence made me stronger during

the difficult moments.

 My special thank to my wife Vanessa, who is always beside me with her endless

love. Your support and motivation were fundamental to the success of this journey, one

more journey of our lives!

 1

I. INTRODUCTION

A. MOTIVATION

 Application-specific coprocessors, including those for cryptography and

compression, can provide significant acceleration and power savings to programs

requiring their services. While most coprocessors have traditionally been constructed as a

separate chip connected to the main CPU over a relatively slow bus connection, 3D

integration is an emerging technology that offers significant performance advantages and

power savings over traditional systems that combine chips at the circuit board level. [1],

[2], [3], [4]. With 3D integration, two or more dies can be fabricated separately and later

combined into a single stack using vertical conductive posts. The vertical posts allow the

3D coprocessor to monitor and even override or disable the internal structures of a CPU,

something that traditional circuit-board-level coprocessors cannot do. In this thesis, we

propose a novel coprocessor architecture in which one layer houses application-specific

coprocessors for cryptography and compression, which provide acceleration for

applications running on a general-purpose processor, or CPU, in another layer. A

compelling application for such a system is one that performs real-time dynamic program

analysis of the internal structures of the CPU layer, collecting data on instructions

executed, memory accesses, etc., and compressing this application trace data to a smaller

size so that it can be transmitted off-chip to permanent storage for offline analysis.

Furthermore, an optional encryption step, performed by the cryptographic circuitry in the

coprocessor layer, can protect this compressed data from interception.

 In this thesis, we set out to answer the following research question: What is a

secure and cost-effective 3D architecture for the real-time transformation (compression or

encryption) of a stream of data, and what are its performance characteristics? Corollary

questions to be answered in pursuit of this question are: What are the requirements of a

data transformation coprocessor in a three-dimensional integrated circuit? Which existing

trace-file compression algorithms and architectures are optimal for compressing dynamic

program-analysis data? What performance characteristics can be expected of a 3D

encryptor or compressor? What are the benefits of a 3D implementation over a 2D

 2

implementation? What is the interface between the coprocessor layer and the processor

layer? How is the coprocessor initialized and invoked? How do the processor and the

coprocessor communicate? What modifications to the computational plane are required to

support an optional control plane? What signals should be monitored, and can the

interface be designed to support a wide variety of monitoring tasks? In addition to the data

transformation circuitry, what other elements are required in the control plane (e.g.,

memory buffers, I/O controllers, etc.)?

 3D integration is an emerging chip fabrication technique in which multiple

integrated circuit dies are joined using conductive posts. 3D integration offers several

performance and security advantages, including extremely high bandwidth between the

two dies and the ability to augment a processor with a separate die housing custom

security features. This thesis will perform a feasibility and requirements analysis of a data

transformation coprocessor in a three-dimensional integrated circuit (3DIC). This thesis

will explore the design of a 3D system consisting of one die housing a general-purpose

processor and another housing a data-transformation coprocessor featuring either

cryptographic or compression functions.

 Traditional 2D cryptographic coprocessors are connected to general-purpose

processors at the circuit-board level, or, in a multi-core, system-on-chip (SoC) at the chip

level. Some processors include cryptographic functions in the instruction-set architectures

(ISA). For some applications, a 2D implementation is sufficient; however, other

applications may require the high bandwidth possible only with a 3D implementation.

 With respect to compression, this thesis will study the principles, performance,

and compression ratios of algorithms developed specifically for compressing trace files of

a processor's execution and study pervasive industrial scenarios in which compression

coprocessors are employed. The results will facilitate the design of a layer in a 3DIC for

compressing data streams such as dynamic program profiles collected from another layer,

thus enabling offline security analysis by reducing off-chip communication and storage

costs.

 With respect to cryptography, this thesis will study basic principles and describe

various cryptographic algorithms. By studying the operation of a specific 2D

 3

cryptographic coprocessor, we will try to implement this specific coprocessor in a 3DIC

design, utilized in order to encrypt the compressed data streams.

 This thesis will consider how to determine the optimal 3D architecture to meet the

requirements of a given application scenario that requires the transformation of data. A

key architectural consideration for the 3D system is the interface between the processor

and the coprocessors, how the coprocessor is invoked, and how to provide independent

I/O and power to the coprocessor.

 Vasudevan et al. have developed the XTRec primitive for recording the

instruction-level execution trace of a commodity computing system while simultaneously

ensuring the integrity of the recorded information on commodity platforms without

requiring software modifications or specialized hardware [5]. Such a primitive can be

used to perform postmortem analysis for forensic purposes. Our work differs from XTRec

in that we are proposing a specialized 3DIC approach, and we argue that our proposed

system would facilitate the capture of additional activity besides the instruction trace at

higher bandwidth.

 Our objective is to answer the research question by designing a system that can

keep track of processor executions in real time, on an untrusted device, and send those

execution traces to a trusted device for behavior analysis or to storage for subsequent

forensic analysis. To do this, we propose a three-dimensional, integrated-circuit

architecture, a trusted piece of hardware comprising a compression and/or cryptographic

coprocessor (control plane) on top of an untrusted integrated circuit (computation plane)

to collect execution traces as they are generated in the processor, then to compress and

encrypt them for transmission over a common network environment. Finally, the traces

are analyzed or stored on this trusted device. The proposed architecture is described in

Figure 1.

 4

Figure 1. Block diagram of proposed system, showing the traces of a processor's
execution in the CPU layer being sent to a compression device in a different layer,
then being encrypted for transferral to an external analysis device. The only trusted

devices are the coprocessor layer and the analyzer.

 We argue that this architecture has the advantage of being faster than other

architectures such as traditional coprocessors packaged separately and connected at the

circuit board level, which we refer to as off-chip devices, or traditional 2D chips that

combine a CPU and a coprocessor on the same die, which we refer to as on-chip devices.

3D integration offers the potential of less latency than either off-chip or on-chip because

of the reduced wire length made possible by stacking. While, in on-chip devices, the

collected traces have to travel a greater distance to be compressed and encrypted than in a

3DIC over internal connection in off-chip devices, the delays are even bigger, because of

the distances and slower off-chip buses involved (with limited pins and inherently slow

bus characteristics). In our proposed architecture, traces are collected dynamically from

Process
Execution

CryptographicCompression

An
al

yz
er

T
r
a
c
e
s

 5

the CPU layer and routed vertically to a corresponding location in the coprocessor layer

by means of through-silicon vias (TSV), reducing wire length and corresponding latency.

A comparison of the three approaches (off-chip, on-chip, and 3DIC) is show in Figure 2.

Figure 2. Comparison of three design paradigms. The horizontal axis represents
time. Arrow width represents data-transfer capacity: a) coprocessor architecture

("off-chip;" bus capacity together with wire length and corresponding latency are
the bottlenecks of this architecture), b) on-chip architecture (although the data
capacity is high, the internal bus delay reduces the speed of the system), and c)
3DIC proposed architecture. For the latter, data that is written to the processor

registers and sent via direct links to the compression registers. The collection of
trace data can be turned to operate in parallel with their execution. This

implementation eliminates latency associated with operation of the bus. A 3D
architecture also provides shorter wire length and reduces the corresponding

latency due to spatial locality enabled by stacking.

 The 3DIC architecture is significant because speed is very important in the

execution trace scenario. This advantage can be applied to dynamic program analysis for

reverse engineering of malicious software and post-mortem analysis of a system that has

suffered an attack. The amount of data collected depends on the granularity of the

collection and the speed of the system. Monitoring and collecting more signals results in a

larger data stream. The compression of data before it is transferred increases the

bandwidth to off-chip storage.

Execution
traces

Internal
Bus
Protocol

Traces Bus
Compress

Data
Encrypt

Execution

traces

Compress
Data

Encrypt

Execution
traces

External
Bus

Protocol

Compress
Data

Encrypt
Traces Bus Data

Data

Data

a)

b)

c)

Processor

Processor

Coprocessor

Processor layer 2
Processor layer 1

Process time

Data
capacity

 6

 Different compression scenarios call for different solutions. For example, in

common image-compression applications, incoming information can be a periodically

delayed or deleted (e.g. when input buffers are full) without significantly compromising

the fidelity of the reconstructed image. However, when collecting execution traces we do

not want to drop any data or slow down the whole system. Loss of important trace data

can be disastrous.

 We argue that, although a 3DIC can cost more, our approach offers several key

benefits. For example, the CPU layer can be sold to ordinary customers without the

coprocessor layer attached, but customers with high trustworthiness requirements can

purchase the joined unit [4]. Moreover, the CPU layer can be manufactured in an

untrusted foundry, while the coprocessor layer is manufactured in a trusted foundry to

provide requisite trustworthiness to the combined system. This approach could improve

the economic feasibility of trustworthy-system acquisition.

 Trustworthy 3D systems can be used for purposes such as protecting information

in government, e-business, banking, and voting machines and providing highly

trustworthy audit and program analysis in real time.

 A 3DIC architecture also enables stacking different technologies and architectures,

each optimized separately for its unique purpose [6].

 A 3DIC implementation of a data-transformation coprocessor has the potential to

significantly reduce the cost of collecting large amounts of dynamic program-analysis

data for offline security analysis, in terms of transmission and storage cost. For example,

the results of this thesis will be useful in a future implementation of a system that uses a

3DIC to reduce the cost of reverse-engineering malicious software and non-security

program profiling. The results of this work can also be used to enhance systems with

custom security functions in a cost-effective and computationally efficient manner. For

example, systems that would traditionally employ a separate crypto coprocessor chip will

be able to use a 3D crypto coprocessor, providing performance benefits for high-

throughput applications as well as security benefits. For example, the crypto coprocessor

can be fabricated in a trusted foundry, and both crypto transformations and key storage

can be decoupled from the computation plane).

 7

B. SCOPE OF THESIS

 This thesis will explore the architecture and design of 3DIC systems consisting of

a general-purpose processor die (computational plane) joined with another die (control

plane), housing either a crypto or compression coprocessor. This will require an

understanding of 3DIC integrated circuit implementation, coprocessors implementation,

and existing compression and encryption schemes.

 This thesis will also present, for comparison purposes, the 2D implementation of a

system consisting of a general-purpose processor with a crypto or compression

coprocessor, and the 3DIC implementation of such a system.

 For each design parameter for the strawman design (e.g., the interface between the

two dies, the method of communication between them, the method of configuring the

control plane, the elements residing in the control plane, the fabrication process, the

modifications to the computation plane, etc.), a choice will be made. The argument for

each choice will be defended based on analysis of real 3D systems described in the

literature. An analysis of the performance of the 3D implementation will be made based

on published figures from the literature, an estimate of the number and size of the vertical

connections, and traditional 2D architectural simulation. In addition, binary

instrumentation [7] will be used to generate a variety of trace files representing dynamic

program-analysis data from the computation plane. These trace files will be used to

compare the performance and compression ratio for a variety of existing trace

compression algorithms. For those compression algorithms that are normally

implemented in hardware, a software program emulating the behavior of the hardware

will be used.

C. THESIS OUTLINE

 This thesis is organized into the following chapters. Chapter II describes the

concepts, terminology, and commonalities of compression and cryptographic

transformations and provides a background on 3DIC technology, coprocessors, data

compression, and cryptography.

 8

 Chapter III covers compression algorithms, 2D compression coprocessors, usage

scenarios, and performance numbers. Chapter IV covers cryptographic algorithms, 2D

cryptographic coprocessors, usage scenarios, and performance numbers.

 Chapter V compares and contrasts various factors in 3D architectures, and

identifies options for a strawman design for real-time transformation of computation plane

data. Chapter VI describes the ideal 3D system, analyzes the requirements for the

interface between the processor and coprocessor layers, describes the elements required in

the control plane, as well as configurable parameters of the crypto and compression

circuitry, to support a variety of crypto and compression tasks. It also develops estimates

of the ideal system’s performance in compression and cryptography. Chapter VII

summarizes the analytical results and describes open issues that call for future work.

 9

II. BACKGROUND

A. INTRODUCTION

 A large variety of modern technologies such as computer networks and electronic

commerce, demand private and secure communications for everyday transactions.

Compression and cryptography provide a useful set of primitives, methods, and modes of

operation to support fast, accurate, reliable, and secure data transmission.

David Solomon defines transformation as “a mathematical operation that changes

the representation of a data item. Thus, changing the decimal number 12,345 to the binary

11000000111001 is a transform” [8].

In the same way we can think about data transformation in the field of

compression: we can transform audio data, or image pixels to a representation that

requires fewer bits. David Solomon describes two simple transformation techniques for

compression: “The transformed items (transform coefficients) are decorrelated. Such a

transform already achieves some degree of compression, but more can be obtained if

lossy compression is an option. The transform coefficients can be quantized, a process

that results in small integers (which can be encoded with variable-length codes) and

possibly also in runs of zeros (which can be compressed with RLE)” [8]. Similarly, in the

field of cryptography, ciphers transform plaintext to ciphertext to protect information

from unauthorized access. Ciphers, together with cryptographic hash functions, help

protect the confidentiality and integrity of data.

We argue that incorporating compression and cryptographic functionality into a

coprocessor embedded in the control plane of a 3DIC can improve the performance of

data transformation significantly.

B. 3D IC TECHNOLOGY

3D integration is an emerging technology in which two or more integrated circuit

(IC) die are fabricated separately and later bonded together into a single stack. The layers

are connected using conductive posts to form a single circuit, and the entire stack is

contained in a single package. Advantages of 3D integration include lower power, high

 10

bandwidth between dies, reduced latency, the ability to join disparate technologies, and

the ability to control the lineage of a subset of the dies, e.g., by manufacturing them in a

trusted foundry.

Figure 3. Application Trend of 3D Silicon Integration (After [10]). We note the
rapid increase of 3D technology within a small period of time (approximately two
years) in conjunction with a significant reduction of the interconnect-via size, from

50μm to less than 2μm. This is important because reducing via size also reduces
wire length and, consequently, the thermal effects of a 3DIC.

2007 2009 2012 >2014

1

10

100

1000

Ve
rti

ca
l i

nt
er

co
nn

ec
t m

in
im

um
 p

itc
h

(μ
m

)

Low density 3D via
Chip level bonding

High density 3D via
Wafer level bonding

CMOS Image sensor

Via size : 50μm

Via size :5-30μm

3D stacked memory

Via size :<5μm

Logic (multicore processor
With cache memory)

Via size :=<2μm

Multi level 3DIC

 11

Figure 4. A three dimensional (3D) structure (From [17]). Two dies are joined

together using face-to-face bonding. The die-to-die vias connect the two dies
together. Through-silicon vias (TSVs) serve two purposes: (1) they provide

interconnection between the C4 I/O bumps and the active region of die; and (2)
they satisfy power-delivery requirements. A heat sink is used for the dissipation of

the heat.

1. Main Technologies for Manufacturing 3DICs

Various 3D technologies are being explored in industry and academia [11], but the

two most used and promising are wafer-bonding [6], [12] and multi-layer, buried

structures (MLBS) [13]. Wafer-bonding technology fabricates each active device layer

separately on a different wafer and then bonds the wafers to form a single entity. On the

other hand, with MLBS, multiple active device layers are fabricated on a single wafer

before a back-end process builds interconnections between the devices. In general, there

are two basic ways of stacking dies: face-to-face and face-to-back, where the ‘‘face’’

refers to the side that supports the metallization (i.e. logical circuits), and the ‘‘back’’

refers to the side with the silicon substrate [6]. Both of these stacking methods will be

analyzed in depth in Chapter V, where we will study various 3DIC architectural

considerations. For face-to-face bonding, a copper–copper bonding process is used to

construct interdie connections, also called die-to-die (d2d) or face-to-face vias. The

process achieves face-to-face vias by depositing the copper material of half of the via on

each die, and then bonding the two dies together, utilizing a thermocompression process.

 12

Finally, a chemical–mechanical polishing (CMP) process thins the back of one die to

reduce the thickness of the bulk silicon. Face-to-face vias are smaller than the through-

silicon vias required for face-to-back bonding [14]. On the other hand, for 3DICs

composed of more than two active layers, face-to-back bonding is the only option.

Figure 5. Bonding orientation (From [6]). This figure shows face-to-face and face-
to-back bonding. Depending on the position of the metal layers of the upper die

relative to those of the lower die, the bonding process is referred to as either face-
to-face, where the metal layers of the layers face each other, or face-to-back, where

the bulk silicon of the upper die faces the metal layers of the lower die.

2. Advantages of 3DIC Technology

3DIC technology offers several potential advantages. Industry is pursuing 3D

integration to increase the number of transistors on a chip as an alternative to the costly

retooling required to make transistors that are smaller than 22nm [14]. Moreover, much

like tall skyscrapers allow more activity within the same footprint, 3DIC technology

increases the number of transistors that can be placed on the same footprint by adding

transistors vertically.

Another advantage of 3D integration is flexibility and modularity, because a high-

performance processor die can be optionally joined with application-specific dies that

perform custom functions such as acceleration.

Another advantage of 3DIC technology is that it facilitates the combination of

dissimilar technology, e.g., dies fabricated separately using different processes that are

optimized for the needs of the individual die and later joined into a single, unified stack.

This has the potential to reduce costs by reusing dies that have been designed, tested, and

Face-to-face bonding Face-to-back bonding

At device layer, d2d size is small to
minimize impact layout

At bonding interface, d2d size must
be large enough for proper
alignment

 13

certified, provided that the necessary modifications to support 3D stacking have been

made. Another benefit of 3D integration is that we can optionally join a die with a die that

implements custom security functions, enhancing the security of a system that requires

them. For instance, a crypto coprocessor can be manufactured in a separate layer called

the control plane, where all crypto operations will execute. This control plane is separate

from the computational plane that utilizes the crypto coprocessor.

We summarize the benefits of 3DIC technology as follows [11]: 1) it offers higher

transistor density per footprint over conventional 2D layout and an increase in the number

of transistors that can be used; 2) The reduction of the total wire length required for the

interconnections leads to an enhancement of the performance; and 3) it has lower power

requirements [16]. It has been shown [16] that the reduction of wire length resulting from

the use of three-dimensional architectures is proportional to a factor of the square root of

the number of layers used. Assuming that we have a four-layer 3DIC, we can achieve on

average times shorter wiring length as depicted in Figure 6.

Figure 6. Reduction of length wiring by a factor of the square root of the number of
layers in three dimensions (After [11]). For a 3DIC with four layers, the average

reduction of the length wiring is a factor of two.

4 2=

 14

3. Challenges of 3D IC technology

3DIC technology has several clear drawbacks, just as skyscrapers do [15]. 1)

Thermal effects and the need to cool a stack of dies present a challenge. New cooling

methods are needed to prevent or eliminate thermal problems. 2) Yield: Each additional

manufacturing step adds a risk for potential defects. In order for 3DICs to be reliable and

commercially viable, these defects must be avoided or repaired, and 3DICs must be tested

and certified to operate properly. 3) New testing methods should be implemented. The

implementation of the requisite test tools and procedures is occurring in parallel with the

implementation of 3DIC technology. Current testing methods and tools for conventional

2DICs are not compatible with 3DIC technology. This impacts research, manufacturing

time, certification, and fabrication cost. 4) Heterogeneous integration supply chain: In

heterogeneously integrated systems, the delay of one part from one 3DIC manufacturer

delays the delivery of the whole product, because the manufacturing process depends on

all participating parties.

C. COPROCESSORS

Coprocessors are application-specific integrated circuits that complement and

accelerate a main processor, typically a general-purpose CPU. CPUs and their

coprocessors can be connected in a variety of ways, from separate chips connected at the

circuit-board level to separate cores on the same chip connected by on-chip buses,

networks, or direct connections. Coprocessors can be upgraded without replacing the

whole system (unless, of course, they reside on the same die). Furthermore, since they are

application-specific, they have the potential of having much higher throughput and much

lower power consumption than a general-purpose processor for certain application

workloads that can benefit from the acceleration they offer.

When designing coprocessors, several aspects have to be considered:

• Onto what kind of slot or interface the device will be attached

• How many pins the device and slot have; this will impose limitations on the

speed of the communication

• How the clock signal will be delivered to the device and whether the device

will operate in sync with the main processor

 15

• How the device will communicate with the main processor and other devices

(microprocessor interface)

What are the input/output signals (are buffers needed?)

D. DATA COMPRESSION

1. Compression

 Compression is basically a redundancy elimination method, so the first step is to

find the redundancy and its cause. David Salomon in [8] presents some simple

explanations of data compression, as discussed below.

The simple compression example is the use of variable-length codes to represent

symbols. As an example, characters can be represented by ASCII or Unicode. Both are

fixed-length codes, but we know that in English the most common letters are E, T, and A,

while J, Q, and Z are least common. Therefore, a basic compression method is just to

choose the characters that appear more frequently and represent them with fewer bits,

instead of representing all characters with the same number of bits, as presented in Figure

7.

Figure 7. Here we present the difference in length of using a fixed-length code
versus a variable-length code to represent a simple text message. In the first row,

we have a text message as it appears to the user; in the second row, the way it
appears to the computer if using ASCII fixed-length representation; in the third row

we represent it using an arbitrary fixed-length code specific to a four-character
alphabet, to reduce the string length; and in the last row, we replace the character
that appears most (L in this case) by the fewest possible number of bits (0 in this
case). Then we look for the second most-used character. Since all the remaining

characters appear only once, we just assign them a different code.

TEXT

ASCll

Variable Length Code

Fixed Length Code

H E L L O

1001000 1000101 1001100 1001100 1001111

00 01 10 10 11

1 00 0 0 01

HELLO

1001000 1000101100110010011001001111

0001101011

1000001

CODE USED CODE EQUIVALENCE STRING SIZE COMPARISSON

 16

 The same approach can be used to compress images, which are made of pixels. To

represent all recognizable colors, we need a large range of possible color values for each

pixel, so we can use 24 bits to represent one pixel. On the other hand, black and white or

grayscale pixels can be represented using a smaller variable-length code and assigning

fewer bits to the most-used colors. This reduces the overall size of the image file. This can

be seen in Figure 8.

Figure 8. We present the difference in length using a fixed-length code or variable-

length code to represent a grayscale image.

 The drawback of this method is that the system has to be able to recognize each

character or pixel representation, which is called uniquely decodable or uniquely

decipherable (UD), as explained by David Salomon in [8]: “Once the original data

symbols are replaced with variable-length codes, the result (the compressed file) is a long

string of bits with no separators between the codes of consecutive symbols. The decoder

(decompressor) should be able to read this string and break it up unambiguously into

000000

FFFFFF

HTML HEX CODES

String size using fixed length HTML code:
000000/FFFFFF/FFFFFF/000FFF/000000/000000/FFFFFF/000FFF

0

1

VARIABLE LENGTH CODES FOR GRAYSCALE COLORS

String size using variable length code:
0/1/1/00/0/0/1/0

00

000FFF

 17

individual codes. We say that such codes have to be uniquely decodable or uniquely

decipherable (UD).” This separation can be done using a time delay between characters in

the same symbol, and a different time delay between different symbols, or using a special

character to indicate the end of one symbol, any time the code increases in complexity or

size.

 Now consider the previous image example, and suppose we have an image from

an orange. It is likely that we will find a large sequence of orange pixels, so we can

replace this sequence with just the first pixel followed by the number of times this pixel

appears. This method is called run-length encoding and can be seen in Figure 9.

Figure 9. Here we present the difference in the string length by using a run-length
method to represent an image with repeated colors.

0

1

VARIABLE LENGTH CODES FOR GRAYSCALE COLORS

String size using variable length code :
0/1/00/00/00/00/00/1/00/00/00/0

0

1

VARIABLE LENGTH CODES AND RUN-LENGTH METHOD

String size using variable length code and run-length for repeating collors:
0/1/1/00x5/1/00x3/0

00

00

5 x (00) 3 x (00)

 18

2. Dictionary methods

 Dictionary compression methods rely on the principles described above.

Dictionary compression, as its name suggests, inputs data and stores it in a special

structure called a dictionary, outputting a pointer to its location (token). The pointer is

smaller than the data stored to that location, so compression is achieved by substituting

the original data with its pointer. David Salomon and Giovanni Motta in [9] describe

dictionary methods as methods that “(…) do not use a statistical model, nor do they use

variable length codes. Instead they select strings of symbols and encode each string as a

token using a dictionary. The dictionary holds strings of symbols, and it may be static or

dynamic (adaptive). The former is permanent, sometimes permitting the addition of

strings but no deletions, whereas the latter holds strings previously found in the input

stream, allowing for additions and deletions of strings as new input is being read.” During

the whole compression process, the algorithm performs a search in the dictionary, looking

for redundancy (a repeating string that was previously seen and stored in the dictionary)

and outputs a pointer to the longest match (the string with the greatest number of equal

characters). If no match is found, this string is stored as a new entry in the dictionary, and

a pointer to its location is the output. Figure 10 shows a simple dictionary compression

example and Figure 11 shows the decompression of the same string. Various dictionary-

based methods have been developed; the major difference between them is how they

handle the process of storing to and searching the dictionary.

 19

Figure 10. We present the dictionary method with just one match. At first it seems
that no compression can be achieved, but as the dictionary fills up, more matches
occur. The methods differ in the way they handle the filling process and how they

manage the dictionary when it is full and more new data is found.

H E L L O

1001000 1000101 1001100 1001100 1001111

DICTIONARY
 00
 01
 10
 11

DICTIONARY
1001000 00
1000101 01

 10
 11

DICTIONARY
1001000 00
1000101 01
1001100 10

 11
DICTIONARY

1001000 00
1000101 01
1001100 10

 11

1001000 1000101 1001100 10 1001111

DICTIONARY
1001000 00

 01
 10
 11

USER REPRESENTATION

MACHINE REPRESENTATION

EMPTY DICTIONARY, NO
MATCH, FIRST STRING IS
OUTPUT AND WRITTEN
INTO THE DICTIONARY

STRING ALREADY EXISTS,
NOTHING TO WRITE, JUST
OUTPUT THE POINTER

FINAL STRING
…

COMPRESSION

 20

Figure 11. Using the compressed string from Figure 10, we present the decompression
phase. We assume that the algorithm can figure out if the input data is compressed
or not. If it’s not compressed, the data is output and written to the dictionary as is;
otherwise the algorithm interprets it as a pointer and outputs the pointer’s content.

a. Adaptive Dictionary

We can specify each dictionary method and show the difference between

them. In [9] David Salomon and Giovanni Motta show that “in general, an adaptive

dictionary-based method is preferable. Such a method can start with an empty dictionary

or with a small, default dictionary, add words to it as they are found in the input stream,

and delete old words because a big dictionary slows down the search”.

b. Sliding Window Dictionary

Some methods use a sliding window over the previously seen inputs as a

dictionary, and the token (output of compressed data) is the triple (offset from the actual

1001000 1000101 1001100 10 1001111

DICTIONARY
 00
 01
 10
 11

DICTIONARY
1001000 00
1000101 01

 10
 11

DICTIONARY
1001000 00
1000101 01
1001100 10

 11
DICTIONARY

1001000 00
1000101 01
1001100 10

 11

1001000 1000101 1001100 1001100 1001111

H E L L O

DICTIONARY
1001000 00

 01
 10
 11

COMPRESSED STRING

EMPTY DICTIONARY, NO
MATCH, FIRST STRING IS
OUTPUT AND WRITTEN
INTO THE DICTIONARY

ALGORITHM SEES A
POINTER, AND OUTPUT
THE CONTENT OF THIS
POINTER

FINAL STRING

USER REPRESENTATION

…

 21

symbol into the sliding window, from right to left, the length of the repeating symbols

from left to right, and next-input symbol). Figure 12 shows an example.

Figure 12. We present a different implementation of a dictionary in a sliding window;
this shows how algorithms vary based on the implementation of the same principles
(After [9]). As an example of how to consider the method based on the kind of data

we are compressing, this method compares the input string only to the sliding
window, not the full data previously seen, so we assume our data will repeat

sooner.

c. Circular Queue Dictionary

A circular queue is another implementation of the dictionary. Instead of

having a sliding window, which has to shift its entire content on each input data, the

circular queue is just a circular array, a linear array physically, that inputs data

sequentially, but when the data reaches the last available position in the string, the pointer

is redirected to the first position and data is overwritten.

s i r _ s i d

DICTIONARY SYMBOL
(sliding window)

INPUT STRING DICTIONARY TOKEN
(offset, length, next symbol)

sir_sid 0,0,s
s ir_sid 0,0,i
si r_sid 0,0,r

sir _sid 0,0,_
sir_ sid 4,2,d

INPUT STRING

GO LEFT 4 SYMBOLS IN THE DICTIONARY, READ 2 SYMBOLS TO RIGHT, NEXT SYMBOL IS “d”
_ , r , i , s s , i

0,0,s 0,0,i 0,0,r 0,0,_ 4,2,dOUTPUT STRING

 22

d. Binary Tree Dictionary

Another implementation of dictionaries uses a binary search tree sorted in

lexicographical order. A binary search tree is defined in [9] as “… a binary tree where the

left sub tree of every node A contains nodes smaller than A, and the right sub tree contains

nodes greater than A,” where “smaller” means that the string appears first in the

dictionary.

The reason for this implementation is that the search process in a balanced

binary search tree is faster, because the number of steps needed to find a node is the

height of the tree, in this case log2 n (where n is the number of elements in the tree).

3. Statistical Methods

Prediction methods take advantage of the context in which data appears. After

inputting a certain amount of data, the method (predictor) is able to guess (predict) the

next input based on the context in which it appears, by means of statistical analysis. That

is why the prediction method is a subset of all statistical methods. For example, we know

from the English alphabet that TH is the most common digram, so after seeing a T we

expect an H with high probability. In the same way, the predictor, after inputting a large

amount of data, generates its own statistics, assign probabilities for the next symbol,

based on context, and chooses the most probable one to output. Good predictors are able

to correctly guess more than 90% of the output data.

Prediction-based methods have a learning or heating phase in order to generate

necessary statistics before being able to make good predictions. In figures 13 and 14, we

show this learning process step-by-step.

 23

Figure 13. Before presenting the overall compression process, we show the
probability table (in percentage): the representation of an algorithm that, based in
the previously seen symbol, having learned about the data (by copying to the table
the previously seen symbol and actual following symbols and counting how many
times they appear), can guess the most-probable next symbol. If the guess matches
the actual symbol we have a hit, and the output is the smallest possible data (“1” in
our example). If the guess doesn’t match the actual symbol, the algorithm outputs a

miss symbol (“0” in our example), followed by the actual symbol.

 PROBABILITY TABLE
 1 2 3
 PREVIOUS

SYMBOL
PROBABILITY OF

SEEING THE NEXT SYMBOL (3)
AFTER

SEE THE PREVIOUS SYMBOL (1)

PREDICTED
NEXT

SYMBOL

 BIN PERCENTAGE BIN

 COMPARES THE PREDICTED

NEXT SYMBOL (3) WITH THE
ACTUAL SYMBOL, IF THEY

MATCH OUTPUT “1”, IF NOT
OUTPUT “0” PLUS THE ACTUAL

SYMBOL

ACTUAL SYMBOL

0
+

BI
N

O

R
1

Bi
na

ry
 re

pr
.(B

IN
)

 24

Figure 14. Learning phase: Unlike the dictionary method, the prediction is slow to

learn about data, and, as we can see, augments the output string during this phase,
adding the miss symbol “0” plus the actual data. After this learning phase, the final

compression is better in terms of compression ratio than the dictionary-based
method.

 1001000 1000101 1001100 1001100 1001111
null H E L L O

PROB TABLE

null null null
 null == H

 PROB TABLE
 null 100 H
 H null null
 null == E

 PROB TABLE
 null 100 H
 H 100 E
 E null null
 null == L

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L null null
 null == L

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 100 L
 L == O

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null

0 H 0 E 0 L 0 L 0 O
1001000 1000101 1001100 1001100 1001111

MACHINE
USER

INITIAL PROBABILITIES

COMPARES THE PREDICTION
AND THE NEXT SYMBOL, IF
FALSE OUTPUT “0”+“SYMBOL”, IF
TRUE OUTPUT “1”

WRITES THE NEXT SYMBOL AFTER
THE PREVIOUS SYMBOL AND
COMPUTES THE PROBABILITY OF
NEXT SYMBOL AFTER PREVIOUS
SYMBOL

“L” WAS SEEN BEFORE, BUT THE
NEXT SYMBOL WAS ANOTHER “L”
AND NOW ITS IS AN “O”, SO THE
COMPARISON FAILS

PREVIOUSLY AFTER SEE A “L” THE
PROBABILITY TO SEE ANOTHER “L”
WAS 100%, BUT NOW THE
PROBABILITY OF SYMBOLS
FOLLOWING “L” ARE 50% OF
ANOTHER “L” AND 50% OF AN “O”

 25

Figure 15. After the learning phase, suppose the string continues and after “HELLO”

we see “HELL;” the table is still being updated with new probabilities, but now that
the algorithm has enough knowledge about our data, more hits are generated.

Therefore, the compression ratio increases, and just 11 bits are output from a 28-bit
input, almost a 3:1 compression ratio. Note that the symbol “L” appears for the

third time after another “L” and changes the probability of symbols after “L” from
50% of ”L” and 50% of “O” to 66% of “L” and 33% of “O”.

 In Figures 16 and 17 we present the decompression phase of the same string.

 1001000 1000101 1001100 1001100
null H E L L

PROB TABLE

null 100 H
H 100 E
E 100 L

L 50 L
50 O

O 100 null
null 100 H

 H == H

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null
 null 100 H
 E == E

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 50 L
 50 O
 O 100 null
 null 100 H
 L == L

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null
 null 100 H
 L AND O == L

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 66 L
 33 O
 O 100 null
 null 100 H

1 1 1 0 1001100

MACHINE
USER

AFTER SEE A null, COMPARES THE
PREDICTION “H” AND THE NEXT
SYMBOL “H”, IF FALSE OUTPUT
“0”+“SYMBOL”, IF TRUE OUTPUT 1”
LIKE H==H IN THIS CASE,
OUTPUTS “1”

NEXT SYMBOL “H” AFTER
THE PREVIOUS SYMBOL null ALREADY
EXISTS AND THE PROBABILITY STILL
100%

THE PREDICTOR CAN’T PREDICT
WHICH ONE TO CHOOSE BECAUSE
BOTH HAVE THE SAME PROBABILITY,
SO IT FAILS AND OUTPUT FALSE

PREVIOUSLY AFTER SEE A “L” THE
PROBABILITY TO SEE ANOTHER “L”
WAS 50%, BUT NOW AFTER SEE “L”
AGAIN, THE PROBABILITY OF SYMBOLS
FOLLOWING “L” ARE 66% OF
ANOTHER “L” AND 33% OF AN “O”

 26

Figure 16. The probability table is empty, and a new learning phase will start for

decompressing the string. Every time the algorithm sees a “0,” it will output the
data that follows and write the data into the table, calculating the appropriate

probability.

null 0 1001000 0 1000101 0 1001100 0 1001100 0 1001111
null 0 H 0 E 0 L 0 L 0 O

PROB TABLE

null null null
 0 == MISS

 PROB TABLE
 null 100 H
 H null null
 0 == MISS

 PROB TABLE
 null 100 H
 H 100 E
 E null null
 0 == MISS

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L null null
 0 == MISS

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 100 L
 0 == MISS

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null

1001000 1000101 1001100 1001100 1001111

H E L L O

MACHINE
USER

INITIAL PROBABILITIES

IF SEES A “0” OUTPUT THE
DATA “AS IS” EXCEPT THE
INITIAL “MISS SYMBOL”
AND WRITE IT TO THE TABLE

COMPUTES THE PROBABILITY OF
NEXT SYMBOL AFTER PREVIOUS
SYMBOL AS DURING THE
COMPRESSION PHASE

“L” WAS SEEN BEFORE, BUT THE
NEXT SYMBOL WAS ANOTHER “L”
AND NOW ITS IS AN “O”, SO WRITE
BOTH TO THE TABLE

PREVIOUSLY AFTER SEEING A “L”
THE PROBABILITY TO SEE ANOTHER
“L” WAS 100%, BUT NOW THE
PROBABILITY OF SYMBOLS
FOLLOWING “L” ARE 50% OF
ANOTHER “L” AND 50% OF AN “O”

 27

Figure 17. Continuing the decompression after the learning phase: The table is still

being updated with new probabilities, but now the algorithm has enough
knowledge about our data to decompress a one-bit symbol with total precision.

Note that to decompress the second “L,” if we had a hit before the algorithm could
guess “L” or “O” because both had the same probability of 50%, from now on the

algorithm will correctly predict “L” because “L” has greater probability (66%
against 33%).

 Other prediction-based methods compare the prediction with the original symbol

and output the difference between them. Therefore, if the prediction is an exact match, the

output is a “zero” representation; if they have a partial match, a “difference”

representation is the output. It is usually smaller than the original data. David Solomon

describes how this difference can compress data: “…the differences tend to be distributed

according to the Laplace distribution, a well-known statistical distribution, and this fact

helps in selecting the best variable-length codes for the differences” [8]. However, the

null 1 1 1 0 1001100

PROB TABLE
null 100 H
H 100 E
E 100 L

L 50 L
50 O

O 100 null
null 100 H

 1 == HIT

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null
 null 100 H
 1 == HIT

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 50 L
 50 O
 O 100 null
 null 100 H
 1 == HIT

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L

L
50 L

 50 O
 O 100 null
 null 100 H
 0 == MISS

 PROB TABLE
 null 100 H
 H 100 E
 E 100 L
 L 66 L
 33 O
 O 100 null
 null 100 H

1001000 1000101 1001100 1001100

H E L L

MACHINE

AFTER SEE A “1” LOOK FOR THE
PREVIOUS SYMBOL AND OUTPUT
THE MOST PROBABLE PREDICTION
FOR IT; IN THIS CASE “1” LEADS TO
THE PREVIOUS null, AND LOOKING
THE PROBABILITIES FOR null WE
CONCLUDE THE MOST PROBABLE
FOLLOWING SYMBOL IS AN “H” WITH
100% PROBABILITIE

POINTS TO THE NEXT SYMBOL TO BE
READ FROM THE TABLE

KEEP UPDATING THE PROBABILITY LIKE
IN THE COMPRESSION PHASE, NEXT
SYMBOL “L” AFTER THE PREVIOUS
SYMBOL “E” ALREADY EXISTS AND THE
PROBABILITY STILL 100%

IF WE HAVE A HIT HERE BUT THE
ALGORITHM DOES NOT KNOW IF IT
SHOULD CHOOSE “L” OR “O”

NEXT SYMBOL “L” AFTER THE
PREVIOUS SYMBOL “L” ALREADY
EXISTS BUT NOW WE SAW “L” THREE
TIMES AND “O” JUST ONCE, SO THE
PROBABILITIES OF SYMBOLS
FOLLOWING “L” ARE 66% OF
ANOTHER “L” AND 33% OF AN “O”

 28

table complexity increases with this method, because now we store the previous symbol,

the next probable symbols, their probabilities, and a code for that symbol.

a. Huffman Coding

The Huffman algorithm assigns codes to symbols and replaces the original

symbol by its respective code in the compressed string. Compression is achieved because

the codes are variable in length, and the shorter codes (one bit is the smallest) are assigned

to the most frequently used symbols. The longer codes are assigned to the least frequently

used symbols.

For frequently used symbols, the representation for each symbol, can be

reduced to one bit. If we are using an eight-bit representation, this results in an 8:1

compression ratio for the most frequent symbol, which increases the ratio for the overall

string.

The Huffman algorithm implements this code using a binary search tree as

described in Figure 18. It presents the Huffman code implemented in a binary tree for the

English alphabet using the frequency with which the letters appear in English text [9].

Figure 18. Huffman code for the 26-letter alphabet. The algorithm orders the symbols
by their frequency in English text and allocates the positions in the tree with a

smaller code assigned to the most frequent symbols.

0 1
0 1

0 1

0 1 0 1

0 1 0 1

0 1
0 10 10 1

0 1
0 1

0 1

0 1

0 10 10 1 0 1 0 1 0 1 0 1 0 1 0 10 1

000

E

0.13

0010

T

0.09

0011

A

0.08

0100

O

0.08

0101

N

0.07

0110

R

0.065

0111

I

0.065

10000

H

0.06

10001

S

0.06

10010

D

0.04

10011

L

0.035

10100

C

0.03

10101

U

0.03

10110

M

0.03

10111

F

0.02

11000

P

0.02

11001

Y

0.02

11010

B

0.015

11011

W

0.015

11100

G

0.015

11101

V

0.01

111100

J

0.005

111101

K

0.005

111110

X

0.005

1111110

Q

0.0025

1111111

Z

0.0025

probability

symbol

code

 29

The code has some restrictions: the smallest possible code has one bit, so if

the alphabet has one-bit symbols (only two symbols, “0” and “1” in this case) like

monochromatic images, we have to incorporate these symbols into a larger bit

representation in order to represent additional characters, and then treat the combination

as our alphabet [9].

b. Adaptive Huffman

Huffman coding assumes that the frequency of symbols is known by the

algorithm, which is not true for some kinds of data. Some texts may not obey the normal

distribution of letters, so in many implementations, the algorithm has to read data twice,

slowing down the process. The first pass is used to calculate frequencies and build the

tree, then a second pass is used to compress the data. This is called adaptive Huffman

code. The implementation of the UNIX “compact” program [9] uses adaptive Huffman

codes, for example.

The adaptive code starts with an empty tree and fills it as data is read and

compressed. Each time a new symbol is read, the algorithm computes a new frequency for

that symbol and updates the tree. This method works if the decompression algorithm

starts with an empty tree also, and updates the tree in the same way the compression

algorithm does, following the same principles as in our example of a statistical table. We

can follow the explanation in [9]: “The first symbol being input is simply written on the

output stream in its uncompressed form. The symbol is then added to the tree and a code

assigned to it. The next time this symbol is encountered, its current code is written on the

stream and its frequency incremented by one. Since this modifies the tree, it (the tree) is

examined to see whether it is still a Huffman tree (best codes). If not, it is rearranged,

which results in changing the codes. (…) The decompressor mirrors the same steps. When

it reads the uncompressed form of a symbol, it adds it to the tree and assigns it a code.

When it reads a compressed (variable-length) code, it scans the current tree to determine

what symbol the code belongs to, and it increments the symbol’s frequency and

rearranges the tree in the same way as the compressor.”

 30

Huffman methods do not have the best compression ratios because they

assign codes with integer numbers to represent frequencies that are, in fact, decimal

numbers, as explained in [9]: “Information theory shows that a symbol with probability

0.4 should ideally be assigned a 1.32-bit code, since −log2 0.4 ≈ 1.32. The Huffman

method, however, normally assigns such a symbol a code of 1 or 2 bits,” so arithmetical

methods were developed.

c. Arithmetic Coding

Arithmetical codes calculate a symbol’s frequency by counting how many

times it appears in the string, representing the frequency with a more complex, yet more

effective, code format.

For a given string, after counting the number of occurrences of each

symbol in the string, the algorithm calculates the probability by dividing its frequency by

the string size (frequency / string size). The result is some number between “0” and “1”

(0% and 100%). The algorithm defines three variables: “LOW”, “RANGE,” and “HIGH,”

then divides the overall probability within this range [0, 1) among all symbols according

to their probabilities. Figure 19 shows the base probabilities and the values of LOW,

RANGE, and HIGH for each symbol.

Figure 19. Base Table for Arithmetic coding of “HELLO.” The input string
“HELLO” is read, and a probability is assigned to each symbol. Then LOW,
RANGE, and HIGH values are calculated for each symbol, where RANGE =

HIGH–LOW. Starting with symbol “H,” LOW=0, RANGE=0.2, and HIGH=0.2.

LOW 0 0.2 0.4 0.8 1 HIGH

RANGE 0.2 0.2 0.4 0.2

H E L L O

.10 .10 .10 .10 .10 .10 .10 .10 .10 .10

H = 0.2 E = 0.2 L = 0.4 O = 0.2

 31

For symbol “E,” LOW=0.2, RANGE=0.2, and HIGH=0.4, and so on.

The code then starts as [LOW, HIGH) = [0, 1), and the following formulas

are applied for each character in turn. :

• NewHigh:=OldLow+Range*HighRange(X);

• NewLow:=OldLow+Range*LowRange(X);

where Range=OldHigh−OldLow, and LowRange(X), HighRange(X) indicate the low and

high limits of the range of new symbol X, respectively, from the base table.

In our exemple:

NewHigh:=OldLow+Range*HighRange(H) => NewHigh:=0+(1-0)*0.2(X) == 0.2

NewLow:=OldLow+Range*LowRange(H) => NewLow:=0+(1-0)*0(X) == 0

NewHigh, NewLow == [0, 0.2)

 A good way to understand the process is to imagine that the new interval

[0, 0.2) is divided among the four symbols of our alphabet using the same proportions as

for the original interval [0, 1). The result is four subintervals [0, 0.04), [0.04, 0.08), [0.08,

0.16), and [0.16, 0.2). When the next symbol “E” is input, the second of those

subintervals, [0.04, 0.08), is selected, as shown in Figure 20, and again divided into four

subintervals [2].

Figure 20. After the first interaction with the formulas for letter H, new probabilities
are assigned to each symbol, inside the range from the previous interaction. The
LOW, RANGE, and HIGH values are calculated again for each symbol. Starting

NewLOW 0 0,04 0,08 0,16 0,2 NewHIGH

RANGE 0,04 0,04 0,08 0,04

H E L L O

.10 .10 .10 .10 .10 .10 .10 .10 .10 .10

H = 0.2 E = 0.2 L = 0.4 O = 0.2

 32

with symbol “H”, LOW=0, RANGE=0.04, and HIGH=0.04; for symbol “E”,
LOW=0.04, RANGE= 0.04, and HIGH=0.08, and so on.

 Using the formulas we get the same result:

 NewHigh:=0+(0.2-0)*0.4(E) == 0.08

 NewLow:=0+(0.2-0)*0.2(E) == 0.04

 [0.04, 0.08)

 This process is repeated until the last symbol is encoded:

 NewHigh:=0.04+(0.08-0.04)*0.8(L) = 0.072

 NewLow:=0.04+(0.08-0.04)*0.4(L) == 0.056

 [0.056, 0.072)

 NewHigh:=0.056+(0.072-0.056)*0.8(L) == 0.0688

 NewLow:= 0.056+(0.072-0.056)*0.4(L) == 0.0624

 [0.0624, 0.0688)

 NewHigh:=0.0624+(0.0688-0.0624)*1(O) == 0.0688

 NewLow:= 0.0624+(0.0688-0.0624)*0.8(O) == 0.06752

 [0.06752, 0.0688)

Then we get the last LOW (0.06752), and remove the integer part as the

final code representation of this string (06752).

To decompress we do the inverse: we get the code (06752), recognize that

the original value was (0.06752), and read the code “0.06752,” which is inside the

RANGE of “H” [0, 0.2). We then output “H” and apply the following formula [2] to

eliminate the effect of symbol “H” from the code:

• Code:=(Code-LowRange(X))/Range

where Range is the width of the sub range of X.

 Code:=(Code-LowRange(H))/Range =>Code:=(0.06752-0.0)/0.2 == 0.3376

Then we get the code (0.3376), recognize that “0.3376” is inside the

RANGE of “E” [0.2, 0.4), output “E,” and apply the formula again to eliminate the effect

 33

of symbol “E” from the code, and so on until the code achieves a value of “0,” meaning

the end of the compressed string:

 Code:=(Code-LowRange(E))/Range =>Code:=(0.3376-0.2)/0.2 == 0.688

 0.688 represents the range of “L” [0.4, 0.8), output “L”

 Code:=(Code-LowRange(L))/Range =>Code:=(0.688-0.4)/0.4 == 0.72

 0.72 represents the range of “L” [0.4, 0.8), output “L”

 Code:=(Code-LowRange(L))/Range =>Code:=(0.72-0.4)/0.4 == 0.8

 0.8 represents the range of “O” [0.8, 1), output “O”

 Code:=(Code-LowRange(O))/Range =>Code:=(0.8-0.8)/0.2 == 0

 0 represents the end of the string

d. Adaptive Arithmetic Coding

Like the Huffman code, the arithmetical code needs a frequency table

before it starts encoding the string. Applying the same principle as adaptive Huffman, it is

easy to understand the principle behind adaptive arithmetic coding.

The method starts with a 100% probability of seeing the first symbol and

updates the probabilities as new symbols appear. In this algorithm, compression is made

in two steps: an arithmetic-encoder step and a probability-calculation step. It reads the

input stream and executes a normal arithmetic encoder. The change is that, after encoding,

it updates the symbol probability table using the old counts, not the updated ones. Only

after the overall process completes is the symbol count updated for the next round. The

importance of updating the symbol count only after encoding and calculating the

probability is that it makes it possible for the decoder to perform the inverse operation.

The decoder does not know which symbol will result from the operation and cannot

search any table for its probability before the overall decoding process. So it first applies

the mathematical formula, compares it to the frequency range, extracts the respective

 34

symbol from it, and then, knowing what the symbol is, searches the probability table and

updates the count for the next round.

E. CRYPTOGRAPHY

1. Definition of Cryptography, Basic Principles and Description of
General Aspects Related to Cryptography.

Throughout history, safe and secure communication has been essential. In 5 BC,

the Spartans employed a cryptographic device to send and receive secret messages. This

device was a cylinder called a scytale that was in the possession of both the sender and

recipient of the message. Today, cryptography is needed to protect the Internet and a wide

variety of network applications used in all aspects of human life. For example, the

exchange of sensitive personal information such as credit-card numbers through the

Internet is a common practice. Thus, protecting data and all related electronic systems is

crucial, and cryptography plays a significant role.

Cryptography is from the Greek word “kriptographia” (κρυπτογραφία), literally,

“secret write” or the art of writing secrets. According to [18], the definition of

cryptography is: “the study of mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and data origin

authentication. Cryptography is not the only means of providing information security, but

rather one set of techniques.”

A secret method of writing is called a cipher [20], in which the cleartext, or

plaintext, is transformed into ciphertext. This process is called encryption, while the

reverse is decryption. A key is required to encrypt or decrypt. In symmetrical

cryptography, the same key is used for both. In asymmetrical cryptography, different keys

are used. The encryption / decryption process is depicted in Figure 21. Another essential

cryptographic primitive is the cryptographic-hash function, which transforms a variable-

length input string into a fixed-length output digest. Cryptographic-hash functions must

be one way, meaning that it is very hard to determine the input given the output, and

collision-resistant, meaning that it is very hard to find two inputs that result in the same

output.

 35

Figure 21. Secret writing, the process by which plaintext is transformed into
ciphertext (After [20]). Transforming plaintext to ciphertext is called encryption,

while the reverse is called decryption. A key is required to encrypt or decrypt.

2. Cryptographic Services

Cryptography is essential to a variety of electronic platforms such as virtual

private networks, electronic commerce, wireless phones, data communications, and smart

cards. A well-defined and implemented cryptosystem should provide the following

services [18]:

• Confidentiality ensures the prevention of unauthorized data observation.

Confidentiality can be achieved through encryption and decryption algorithms.

• Data integrity prevents the unauthorized modification of data. A useful

method of enforcing data integrity is cryptographical hash functions.

• Authentication is the process that verifies the identity of a specific entity

involved in a communication session. There are two kinds of authentication. Entity

authentication focuses on the authentication process between the entities of a

communication session; data-origin authentication is responsible for the authentication of

plaintext ciphertext

encipher

decipher

 36

the origin (time, owner) of data transmitted and received during a communication session

[19].

• Non-repudiation is a process that prevents an entity from denying that he

sent data during a specific communication session or, in general, prevents the denial of

the authenticity of data, mail, or digital signatures transmitted during a communication

session.

3. A Basic Scenario of Cryptographic Application

In order to understand how cryptography applies to secure communication we

present the following simple communication scenario [19], which is depicted in Figure

22. Assume that there are two participants, Alice and Bob, and they intend to

communicate. Also, a third party, Eve, is an eavesdropper. If Alice wants to send a

message to Bob, she encrypts the plaintext using a cipher that she and Bob have agreed

upon. While Eve may be aware of the encryption method, she does not know the key.

Kerckhoff's principle states that a cryptosystem should be secure even if the design of the

cipher is public. In order for Bob to decrypt the received message, he uses the decryption

key. Eve might have the following goals:

• Get and read that message.

• Retrieve the key and thus decrypt all messages encrypted with that key.

• Alter Alice’s message or replace it with another.

• Masquerade as Alice and communicate with Bob, while Bob thinks he is

communicating with Alice.

 37

Figure 22. Fundamental Communication Scenario for Cryptography (After [19]). The

two entities, Alice and Bob, want to communicate with each other. For Alice to
send a message to Bob without Eve’s access, she uses an encryption key to encrypt

her message (plaintext). Bob receives the encrypted message (ciphertext), and
decrypts it with a decryption key.

There are four types of attack [19] that Eve can implement. These attacks are

based on the amount of information available to Eve for cryptanalysis.

• Ciphertext only

• Known plaintext, where she has both the ciphertext and corresponding

plaintext.

• Chosen plaintext, where she has temporary access to the encryption cipher,

but cannot retrieve the key. However, she can encrypt a chosen plaintext

and try to determine the key.

• Chosen ciphertext, where she has temporary access to the decryption

mechanism and tries to determine the key.

AliceAlice AliceEncrypt AliceDecrypt AliceBob

AliceEve

plaintext ciphertext

Encryption
Key

Decryption
Key

 38

4. General Description of Cryptographic Algorithms (Symmetric,
Asymmetric, Hash Functions)

As stated in [20], a cryptographic algorithm, or cipher, is a mathematical function

used for encryption and decryption. According to [22], cryptographic algorithms are

divided into three main categories: private (symmetric) key encryption, public

(asymmetric) key encryption, and hash functions.

a. Symmetric, Private-Key Encryption

 Symmetric-key cryptography is a class of algorithms that allows parties to

communicate securely only when they share some prior secret, such as the secret key.

Each user must trust the other not to reveal the key to a third party. The sender and the

recipient can encrypt and decrypt a specific message using the same secret key. Figure 23

depicts symmetric-key encryption.

 There are many symmetric-key algorithms, including DES (Data

Encryption Standard), Triple DES, and AES (Advanced Encryption Standard). In this

thesis, the 128-bit AES algorithm, utilized by traditional 2D cryptographic coprocessors

[HSSEC], is incorporated into our proposed 3DIC compression-crypto (data

transformation) coprocessor.

 39

Figure 23. Symmetric key encryption (After [19]). The two entities that want to
establish a communication session have already exchange shared a common secret

key. The sender encrypts the plaintext with the common secret key, and the
receiver decrypts it with the common secret key that he has on his possession in

order to access the received message (ciphertext).

b. Stream and Block Ciphers

Symmetric-key encryption is further divided into two categories [20]. The

first category is the stream cipher or stream algorithm, where the encryption operates on

plaintext bit by bit or sometimes byte by byte. The second category is the block cipher or

block algorithm, where each block is a specific group of bits of plaintext data (64 or 128

bits), which enciphers to a ciphertext of the same length. Block ciphers have five possible

modes of operation: electronic codebook (ECB), cipher-block chaining (CBC), cipher

feedback (CFB), output feedback (OFB), or counter (CTR). Table 1 summarizes the

modes of operation of block ciphers. A detailed discussion of the electronic codebook

AliceEncrypt AliceDecrypt
plaintext ciphertext

Secret
Key Secret

Key

Oringinal
plaintext

Common secret
key

 40

(ECB) and cipher-block chaining (CBC) modes, which are going to be used for the AES-

128 encryption component of the proposed cryptographic coprocessor, will follow in

Chapter IV.

Mode Description Typical Application
Electronic Codebook (ECB) Each block of 64 plaintext bits

is encoded independently
using the same key.

• Secure transmission of
single values (e.g., an
encryption key)

Cipher Block Chaining (CBC) The input to the encryption
algorithm is the XOR of the
next 64 bits of plaintext and
the preceding 64 bits of
ciphertext.

•General-purpose block
oriented transmission
• Authentication

Cipher Feedback (CFB) Input is processed j bits at a
time. The preceding ciphertext
is used as input to the
encryption algorithm to
produce pseudorandom
output, which is XORed with
plaintext to produce the next
unit of ciphertext.

• General-purpose
stream-oriented
transmission
• Authentication

Output Feedback (OFB) Similar to CFB, except that the
input to the encryption
algorithms is the preceding
DES output.

• Stream-oriented
transmission over noisy
channel (e.g., satellite
communication)

Counter (CTR). Each block of plaintext is
XORed with an encryption
counter. The counter is
incremented for each
subsequent block.

•General-purpose block
oriented transmission
• Useful for high-speed
requirements

Table 1. Block Ciphers mode operation summary (From [23]).

c. Public (Asymmetric) Key Encryption

 Unlike symmetric cryptography, asymmetric cryptography uses a different

key for encryption and decryption. Each user must have two keys, one private and one

public. The keys are mathematically related and created with a key-generation algorithm.

Both the sender and receiver will keep their secret key confidential and allow their public

keys to be distributed. In order for the sender and receiver to communicate, the sender

must encrypt the message with the receiver’s public key. The receiver decrypts the

received message with his private key. The public-key encryption process is depicted in

Figure 24. According to [22], asymmetrical algorithms are poorly suited for encrypting

 41

large messages because they are relatively slow. However, these algorithms support

authentication, integrity, and non-repudiation, and they allow parties who have never met

to securely communicate. There are several asymmetric algorithms such as RSA, DH,

Pohlig-Hellman, El Gamal, and ECC. Asymmetrical algorithms also support digital

signatures, key transport, and key agreement.

Figure 24. Asymmetric-key encryption (After [19]). Asymmetric cryptography uses a
different key for encryption and decryption. Each entity (Alice and Bob) must have

two keys, one private and one public. Both sender and receiver keep their secret
key secret and allow their public keys to be distributed. In order for the sender and

receiver to communicate, the sender (Alice) must encrypt the message with the
receiver (Bob’s) public key. To decrypt the received message, the receiver must use
his private key. The public and private keys of each entity are related but unequal.

d. Hashing Functions

 A cryptographic-hash function takes a variable-length input and produces a

fixed-length output using a one-way mathematical function. More precisely, as described

in [18], “a hash function h maps bit-strings of arbitrary finite length to strings of fixed

length, e.g., n bits. For a domain D and range R with h: D→R and |D| > |R|, the function is

many to one, which implies that the existence of collisions (pairs of inputs with identical

output) is unavoidable.” The result is called a message digest, or hash code, hash-result,

hash-value, or simply, hash. The output can be considered a fingerprint of the data. Using

this primitive, the integrity of data can be enforced. It is feasible for any entity to

reproduce the message digest from the same stream of data, but it is not feasible to create

AliceAlice AliceEncrypt AliceDecrypt AliceBob
plaintext ciphertext

Bob’s public
Key

Bob’s private
Key

 42

a different stream of data that produces the same message digest [22], which would result

in a hash collision.

 Hash functions enhance data integrity by supporting digital signature

schemes, where a message is typically hashed first, then the hash-value, as a

representative of the message, is encrypted [22]. Hash functions do not provide

confidentiality and non-repudiation [22]. There are many cryptographical hash

algorithms, including SHA-1, SHA-2, SHA-128, SHA-256, SHA-512, MD-2, MD-4, and

MD-5. SHA-1 is the most widely used of the existing SHA hash functions, and it is

employed in several widely used security applications and protocols. A detailed

discussion of SHA-1 and SHA-512 follows in Chapter IV.

 43

III. COMPRESSION

A. INTRODUCTION

 Processor designers must balance several competing constraints. Compression is a

useful technique for reducing power consumption and execution time, e.g., by ensuring

that the most frequently fetched instructions have the shortest length in bits. In this

chapter we present different algorithms and hardware architectures for compression.

B. COMPRESSION

 The main taxonomy for compression divides algorithms into lossy or lossless.

Lossy compression works by throwing away information that does not substantially affect

the message’s ability to be understood; but this method is unable to reconstruct the

original data exactly. Lossless compression, on the other hand, does not discard any

information; it is merely represented by fewer bits. Decompression restores the original

data exactly. Both forms of compression have a wide range of applications such as

communication and computing.

 Another type is “cascaded compression,” where the data passes through different

compression algorithms in series. This technique works well with lossless algorithms, but,

with lossy algorithms, can magnify errors during decompression.

 Video or audio compression can be performed using lossy compression algorithms

since a small or even imperceptible loss fidelity can often be sacrificed for a substantial

size reduction.

 Compression performance is measured in terms of compression ratio, which is

defined as the size of the output data divided by the size of the input data. A value smaller

than one means that the compression yielded a size reduction. The inverse of the

compression ratio is the compression factor.

 In our system, we are proposing to send compressed execution traces from an

untrusted computer to a trusted one, in order to reconstruct the machine’s state exactly for

analysis. Therefore, we require a lossless compression scheme.

 44

 Before describing algorithms suitable for our proposed system, we provide a brief

survey of compression methods.

C. COMPRESSION ALGORITHMS

 Of the many compression algorithms, we focus on the methods preferred by

industry (e.g., AHA and IBM) and research groups (e.g., dictionary and statistical).

D. STRING COMPRESSION

 Data can be compressed either symbol by symbol or one string at a time. Since

symbols have different probabilities of being used, Huffman coding assigns a code to

each symbol and compresses data symbol by symbol. Compressing strings of symbols

achieves better compression ratios because a group of n individual symbols with different

probabilities requires more bits per symbol to represent than assigning Huffman codes to

the 2n strings (all possible permutations) formed by the individual symbols. Dictionary

methods compress strings, which one reason they are used more often than Huffman is

coding and its variants [9]

E. DICTIONARY METHODS

 Dictionary compression accepts data as input and stores it in a special structure

called a dictionary, outputting a pointer to its location (i.e., a token). The pointer is

smaller than the data stored to that location; therefore, substituting the original data with

its pointer achieves compression. Chapter II described dictionary compression, and we

now present a variety of algorithms that perform dictionary compression.

1. Lempel Ziv

 “Having one’s name attached to a scientific discovery, technique, or phenomenon

is considered a special honor in science. Having one’s name associated with an entire

field of science is even more so. This is what happened to Jacob Ziv and Abraham

Lempel. In the late 1970s these two researchers developed the first methods, LZ77 and

LZ78, for dictionary-based compression. Their ideas have been a source of inspiration to

many researchers who generalized, improved, and combined them with RLE and

 45

statistical methods to form many popular lossless compression methods for text, images,

and audio” [9].

2. LZ77

 Lempel and Ziv 77 [LZ77 also known as LZ1] is a dictionary method that uses a

sliding window for search, and a look-ahead buffer, as presented in Chapter II. The look-

ahead buffer is divided into three parts: the offset (distance between the symbol being

encoded and the same symbol previously seeing), the length of the matching string, and

the next symbol to be read. The offset size is the log2 of the length of the search buffer,

which may be a few thousand bytes long. Therefore, the offset size is about ten to twelve

bits. The length part is the log2 of the length of the look-ahead buffer (L, which is on the

order of tens of bytes) minus one (for the next symbol field): log2(L − 1), which results in

a field a few bits long. The next symbol field is about 8 bits and depends on the size of the

alphabet used. Therefore, the total size of the token is about 11 + 5 + 8 = 24 bits, and the

encoder needs to encode a string with a size of at least 3 bytes (24 bits) at a time, in order

to not produce a larger file than the original.

 The most difficult part of the algorithm is the search. Every search implementation

must balance between speed and memory size. “A binary search tree gives good

performance for only modest memory requirements [24],” but “a hash table appears to be

a contender [24],” because many hash tables are available for improving performance.

3. LZR

 LZR derives from the LZ77 method, but the lengths of buffers are unbounded [9].

It will search the entire space for the best match, and it incurs a memory overhead to store

data, as well as a time overhead for searching this data structure. It manages the memory

space by increasing the size of the buffers until no more space is available and

maintaining them at that size, or by deleting the buffers and starting to fill the memory

again.

 To reduce the search time, LZR proposes the use of a suffix tree: instead of

deleting nodes and recomposing the tree’s structure, just mark the nodes as deleted, and

delete the tree if all nodes in a tree are marked as deleted. Another drawback of this

 46

method is the size of the output, because of the unbounded buffers, which are reduced by

encoding the output using a variable-length code that allows reduction of the output from

order n to order 2log2 n.

4. LZSS

 Storer and Szymanski developed LZSS in 1982 [26]. LZSS is also a variant of

LZ77 but with several improvements: the implementation of the look-ahead buffer in a

circular queue; the implementation of the search buffer in a binary search tree; and the

output token’s reduction to two fields instead of three (only the offset and the length are

present). The LZ77 representation for “no match” is a token with the three fields (0, 0,

next symbol); in LZSS a one-bit flag is set for every output. If no match is found, LZSS

outputs the one-bit “miss” flag and the original uncompressed data. If a match is found,

LZSS outputs a one-bit “hit” flag followed by the two-field token. “LZSS decoding is

very fast and comparatively little memory is required for encoding and decoding” [26].

 LZSS also changed the size of the buffers to output a one-byte uncompressed

ASCII, or a two-byte compressed token; the search buffer has two kilobytes (= 211), and

the look-ahead buffer has 32 bytes (= 25). This results in an offset field of eleven bits and

a length field of five bits, for a total of two bytes (remember that token fields are a

representation of the actual data, so we need n bits to represent 2n bits of data). For the

extra one-bit flag, they collect and output those flag bits eight at a time for the next eight

items (uncompressed ASCII or tokens), for performance reasons.

 A significant change that improves speed is the implementation of a binary search

tree for the search buffer. This buffer has a fixed size: the tree grows until the maximum

size is achieved and keeps the same number of nodes, changing only its shape, according

to the deletion and insertion of nodes in different places, until the end of the compression,

when the tree decreases in size until no more symbols are stored and the tree becomes

empty.

 47

The algorithm for LZSS is the following [26]:

 while lookahead buffer not empty do
 get a pointer (offset,length) to the longest match in the window for the
 lookahead buffer
 if length > p then
 output the pointer (offset, length)
 shift window length characters
 else
 output first character in lookahead buffer
 shift window one character

5. LZB

 LZB, proposed in 1987, is an improvement over LZSS and changes the token’s

representation. It adapts the size of the first field of the token (the offset) according to the

actual size of the search buffer being represented. At the beginning of compression, if just

two symbols are stored in the buffer, only one bit is needed to represent them with the

token. The number of bits increases as the buffer is filled, and after 50% of the buffer is

filled, the maximum number of bits is used. For the second field of the token (the length),

the algorithm uses the Elias gamma code, a variable-length code, to represent small

numbers with fewer bits. In this code, the length of the integer n is 1 + 2 |log2 n|, and it is

ideal for cases where n appears in the input with probability 1/ (2n2). The Elias gamma

code can represent small numbers with fewer bits than a fixed-size code. The example

below, adapted from [9], summarizes this code. Figure 25 shows a graph of its

performance.

 For the number n=20, the encoding occurs as follows:
1. Find the largest integer N such that 2N ≤ n < 2 N+1 and write n = 2N + L.
 2N ≤ n < 2 N+1 => 16 < 20 < 32 => 24 < 20 < 25 => N=4
 n = 2N + L => 20 = 24 + L => L=4 Notice that L is at most an N-bit
integer.
2. Encode N in unary either as N zeros followed by a 1 or N ones followed by a zero.
 N=4 = 00001 in unary (four 0s followed by 1)
3. Append L as an N-bit number to this representation of N.

 L=4 = 0100 in N-bit binary, so 00001 append 0100 = 000010100
4. n = 000010100

 48

Figure 25. This graph shows the lengths of the Elias gamma code and the standard
variable length binary (beta) code, comparing them and showing the advantage of

Elias gamma codes for small numbers n (From [9]).

6. GZIP

 GZIP is one implementation of Deflate (a “public domain compression method

based on a variation of LZ77 combined with Huffman codes” [9]), which was developed

by Philip Katz and implemented in PKZIP, supporting the zip-file format and other

variants. In GZIP, the token has two fields, as with the previous method: the offset,

limited to 32K bytes, and the length, limited to 258 bytes. As before, if no match occurs,

the uncompressed string is written to the output.

 In contrast, Huffman codes are written for the token fields, using two tables

because of the different sizes of the output fields: one for lengths (limited to 258 bytes)

and uncompressed strings (bytes normally in the interval 0-255), and another for offsets

(up to 32 Kbytes). When an offset/length is found, the algorithm searches the tables for its

Huffman codes.

 49

 The algorithm also can perform two searches and compare them in order to find

the longest match in three different modes:

1. The default mode (the longest-length match): the first match is compared with a

predefined value. If the length is greater than this value, a second search is not

done, and if it is smaller, a second search is done.

2. If the user desires speed: a second match is not done, which comes at the expense

of a poor compression ratio.

3. If the user desires the best compression ratio: a second search is always done over

the entire search buffer, at the expense of more time.

 Another improvement is the practice of generating two different kinds of tables: a

fixed table built into the encoder and decoder, used to speed up the process, which may

not be optimal for compressing certain types of data; and a flexible table constructed from

statistical data collected at runtime from the data being compressed. The disadvantage of

this approach is that those tables have to be compressed together with the data in order to

allow the algorithm to perform the decompression. These runtime-generated tables are

Huffman encoded; therefore, along with the data, the output file has a Huffman table for

decoding the two encoded tables.

 Due to the importance of GZIP, other deflate variants, and this new table structure,

we investigate more deeply how the fixed, built-in tables represent the data.

 Length/uncompressed tables have pre-codes from 0 to 285, which may be

followed by extra bits. From 0 to 255, the pre-codes are used to represent uncompressed

literals; pre-code 256 is used to represent end of block; and pre-codes from 257 to 285

represent lengths (figure 26a). Rather than forming the output string, they are used as

references to the length-code table (figure 26b), which will convert them in the actual

output-code bits. For the offset, a table with five-bit, fixed-length codes and extra bits are

used to represent all 32,768 possible offsets (represented in decimal instead of binary in

Figure 26c.

 50

Figure 26. In the length pre-code table (a), codes from 257 to 285 are used to
represent lengths; these pre-codes are used as references to the length-code table
(b), which will convert them to the actual output-code bits. Table (c) shows the
five-bit, fixed-length codes and extra bits used to represent all 32,768 possible

offsets (After [9]).

Pre-Code Extra
bits Lengths

Codes
(in decimal)

Extra
bits Offset

 257 0 3

0 0 1
258 0 4

1 0 2

259 0 5

2 0 3
260 0 6

3 0 4

261 0 7

4 1 5,6
262 0 8

5 1 7,8

263 0 9

6 2 9–12
264 0 10

7 2 13–16

265 1 11,12

8 3 17–24
266 1 13,14

9 3 25–32

267 1 15,16

10 4 33–48
268 1 17,18

11 4 49–64

269 2 19–22

12 5 65–96
270 2 23–26

13 5 97–128

271 2 27–30

14 6 129–192
272 2 31–34

15 6 193–256

273 3 35–42

16 7 257–384
274 3 43–50

17 7 385–512

275 3 51–58

18 8 513–768
276 3 59–66

19 8 769–1024

277 4 67–82

20 9 1025–1536
278 4 83–98

21 9 1537–2048

279 4 99–114

22 10 2049–3072
280 4 115–130

23 10 3073–4096

281 5 131–162

24 11 4097–6144
282 5 163–194

25 11 6145–8192

283 5 195–226

26 12 8193–12288
284 5 227–257

27 12 12289–16384

285 0 258

28 13 16385–24576

29 13 24577–32768

 Pre-Code bits Codes (in binary)
 0–143 8 00110000–10111111
 144–255 9 110010000–111111111
 256–279 7 0000000–0010111
 280–287 8 11000000–11000111

a) c)

b)

Length table Offset table

Length code table

 51

 The deflate search uses large buffers; therefore, instead of moving data, the

algorithm moves a pointer to indicate where the search buffer ends and the look-ahead

buffers start. The strings are hashed and stored in a hash table; the encoder then hashes the

next string and compares the hashes, searching for matches.

 Deflate and its variants such as GZIP are very important due to their performance,

speed, and availability of free implementations: “deflate normally produces compression

factors of 2.5 to 3 on text, slightly less for executable files, and somewhat more for

images. Most important, even in the worst case, deflate expands the data by only 5 bytes

per 32 Kb block. Also, free implementations to avoid patents are available” [9].

7. LZ78

 LZ78 does not use any buffer or sliding window; instead, it uses all assigned

memory to store previously seen strings in a dictionary structure. It starts with an empty

dictionary and reads the first symbol, a one-symbol string. As LZ78 executes, the current

symbol is read and the dictionary is searched for a match. If a match is found, LZ78 reads

the next symbol, concatenates it with the previous, and tries to find a two-symbol match

in the dictionary. This process continues until a new concatenated symbol causes a miss

during the search. The algorithm then outputs a pointer to the longest match (the first field

in the token), outputs the symbol that caused the miss (the second field in the token), and

stores the newly formed string in the dictionary. “LZ78 and arithmetic codes outperform

LZ77 in the compression achieved, and the encoding speed” [26].

 Dictionary sizes can vary: a long dictionary can store more strings, but the

pointers are bigger and the search process longer. Dictionaries are implemented as a tree

(one that is not a binary tree); each new symbol added to a string is appended to the tree

as a child of the last string’s value, as shown in Figure 27.

 52

Figure 27. Implementation of the LZ78 tree (From [9]). Each new symbol is
appended to the tree as a child of the string to which it belongs. For example, in the
new string silo, the algorithm matches sil, outputs (1, o) (a pointer to the beginning

of the string, new value), and o is appended as a child of 13-l.

8. LZW

 LZW, published in 1984, is a variant of LZ78, in which the second field of the

token is omitted. It outputs just the pointer to a dictionary location. For a normal 8-bit

alphabet, the dictionary is preloaded with all 256 one-symbol strings; therefore, a match is

guaranteed for the first input symbol, eliminating the need for the first (0, symbol) “miss”

token. The next symbols to be appended to these one-symbol strings are inserted at

positions above 257. The dictionary is implemented as a tree similar to the LZ78

algorithm, but instead of appending the new symbols as children of the strings, they are

concatenated with the previous symbol or string. This new string is written to a location

determined by its hash value along with its parent’s address. The values stored at this

location are the new portion of the string and the address of its parent.

 The decoder works in the opposite manner; it takes the same dictionary of one-

symbol strings, plus the output tokens, and reads the content of each token’s location. At

the beginning of the decompression phase, the first tokens correspond to one-symbol

strings. After input, the first token the decoder reads the next symbol and concatenates it

with those one-symbol strings, resulting in a two-symbol string. The decoder stores this

string at a location pointed to by the hash value of this new two-symbol string and writes

26- o

27

 53

the actual one-symbol string’s location as its parent. Figure 28 shows the encoding

process and Figure 29 shows decompression. The problem, not shown in the figures, is

that the decoder decodes the string in reverse order, using a stack to store the string and

pop the values for the output at the end of the process in the right order. LZW is slower

because just one character is appended at a time.

symbol

new

string preloaded dictionary blank dictionary token

 0 … 101 … 104 … 108 … 111 257 258 259 260 261 262

h he null … e … h … l … o 104,e 104

e el null … e … h … l … o 104,e 101.l 101

l ll null … e … h … l … o 104,e 101.l 108,l 108

l lo null … e … h … l … o 104,e 101.l 108,l 108,o 108

o oh null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 111

h he* null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 257

e hel null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 257,l

l ll* null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 257,l 259

l l null … e … h … l … o

Figure 28. LZW Encoder. The string hellohell is read: the first symbol h is preloaded
into the dictionary, resulting in a match. The next symbol is e, and the encoder tries
to find a match for the concatenation he (the longest match) but fails; therefore, it

outputs the address for h. Since the concatenated string he is a new string, the
encoder also stores this string at a new address (257) provided by a hash function;
the values stored are its parent’s location (h=104) and the new value added (e in

this case). The algorithm always tries to find the longest match; therefore, when the
algorithm inputs the second h, it also inputs the second e as before and tries to find

a match for he. Now that he is stored, the algorithm also tries the three-symbol
string hel but fails to find a match. Therefore, after failing to match order three, the

algorithm returns to order two and outputs this location (257).

 54

token preloaded dictionary symbol new blank dictionary symbol

 0 … 101 … 104 … 108 … 111 257 258 259 260 261 262

104 null … e … h … l … o h

101 null … e … h … l … o e he 104,e

108 null … e … h … l … o l el 104,e 101.l

108 null … e … h … l … o l ll 104,e 101.l 108,l

111 null … e … h … l … o o lo 104,e 101.l 108,l 108,o

257 null … e … h … l … o 104,e 101.l 108,l 108,o 111,h he

259 null … e … h … l … o hel 104,e 101.l 108,l 108,o 111,h 257,l ll

Figure 29. LZW Decoder. The first token (104) is read, and the output of this address
(h) is the first symbol. The process continues with the next token (101), which
results in a new symbol (e), but now it also stores the concatenation (he) of the

previous two symbols in the dictionary (257). Like the encoder, when the decoder
reads the token 257, the dictionary already contains its value: (104, e) -> (h, e) ->

he. The output is the concatenation of the two-symbol columns.

9. LZC (UNIX Compress)

 LZC is a variant of LZW, but with a different dictionary implementation. It starts

with a size of 512 entries, with the first 256 already filled as with LZW, and 9-bit pointers

to those 512 locations. When the dictionary is filled up, it doubles in size, using 10 bits to

represent the 1024 locations and so on, until the limit is reached. The limit can be set by

the user, up to 16-bit pointers, the default being the 16-bit pointer. When the limit is

reached, the dictionary becomes static, and the algorithm starts monitoring the

compression ratio. If the ratio drops below the threshold value, it erases the dictionary and

starts the filling process again. The decoder will detect the special symbol for this erase

process, and will also erase the dictionary and start filling it again.

10. LZT

 LZT is an improvement over LZC; the difference is the way it handles a full

dictionary. The LZT algorithm stores a dictionary and a linked list of keys sorted by the

number of times they are used. When the dictionary becomes full the algorithm deletes

the least-recently-used (LRU) key and its reference in the dictionary.

 55

This represents an improvement over LZC because when LCZ deletes the entire

dictionary, its performance immediately drops, and in LZT, with just part of the

dictionary deleted, the performance becomes more consistent. The downside is that LZT

is slower because of this new structure of linked lists of keys.

11. LZMW

 LZMW, published in 1985, is a variant of the LZW algorithm, with a difference in

the dictionary implementation. The LZMW algorithm, like LZT, deletes the least-

recently-used (LRU) dictionary entries, and it also must keep track of the dictionary used

in an additional structure. The major difference of this method is that, unlike LZW, the

dictionary can grow by more than one symbol at a time. Instead of having one symbol

added to the dictionary and a second one pointing to it, both can be stored in the same

dictionary location, meaning the algorithm adapts faster to the input data. However, this

also introduces some problems: during the dictionary search, suppose that the dictionary

already has strings aaaa and aaaaaaaa. During the search, the algorithm must go until the

eighth symbol of the string aaaaaaab to realize that it is necessary to choose the shorter

phrase aaaa [9].

12. LZFG

 LZFG is a mix between LZ77 and LZ78; it outputs a mix of literals and tokens. If

the output is not compressed, it outputs the “code for literal,” followed by the size of this

literal. If the output is found, it outputs the “code for token,” the offset from the

previously seen string to the first symbol of the compressed string, and the number of

symbols to input. Figure 30 shows an example.

 56

Figure 30. The compression of string hellohell is shown. For the first three symbols h,
e, and l, there is no match, so they are output as literals. For the fourth symbol, l,

there is a match returning one position and reading one symbol, so it is output as a
(token, 1, 1). When the next tokens count back for a match, all previous symbols

are included in the count, even the symbols represented by previous tokens.

13. ALDC

 ALDC is an LZSS-based method patented by IBM and used in commercial IBM

and AHA compressor coprocessors. The dictionary is filled during compression in the

same way as is done during decompression using the input data. Therefore, like the other

methods, it is not necessary to include the dictionary in the compressed data, but it has to

be reset before each new data file is input.

 Data is stored sequentially to the dictionary from location zero to the maximum

available size, which can range from 512 bytes to 1024 and 2048 bytes. The increase in

compression ratio is only 3% for each size upgrade; therefore, 512 bytes has the best

cost/benefit configuration. The algorithm processrs data one byte at a time, and when the

dictionary is full, the oldest data is replaced. The output for a hit is a one-bit flag to

identify the hit, and a two-field token, the byte count (size), and the history location

(address). If the string is not already stored in the dictionary, the output is a miss bit plus

the literal (original data). ALDC uses a non-adaptive coding scheme to arrange the output.

The data address is encoded using fixed-size binary, and the length is a quasi-logarithm

code from two to twelve bits, for a total of 286 values, with the last sixteen values used

for control and the last value defined as the end of compressed stream.

hello hell => (literal 3) h e l (token 1,1) (literal 1) o (token 5,3) (token 1,1)

3 1

back 1 to ‘l’
read 1 ‘l’

back 1 to ‘l’
read 1 ‘l’

back 5 to h
o,l,l,e,h
read 3
‘ h e l ’

hello hell => (literal 3)hel(token 1,1)(literal 1)o(token 5,3)(token 1,1)

 57

The 270 previous codes are for output lengths and can range from two to 271 bytes (the

one-byte string is not considered since there is no compression).

14. Dictionary Summary

 The difference between these algorithms is the way they handle the dictionary

write and search process; when a match is found, a token with its position in the

dictionary is output. If the token has fewer bits than the data, then compression is

achieved.

F. STATISTICAL METHODS

 Statistical compression inputs data and outputs a variable-length code with short

codes assigned to most used symbols, based on a statistical table. The code is smaller than

the data it represents; therefore, compression is achieved by substituting the original data

with its code. Statistical compression was introduced in Chapter II, and we now present

some statistical compression algorithms.

1. Prediction

 Prediction is a method in which the algorithm tries to predict the next symbol

based on the context of data. Prediction-based compression algorithms can be divided as

follows.

1. Statistical model: the algorithm counts the times a symbol appears in the input

data and assigns probabilities based on this count. For example, if symbol s was

seen three times in a ten-symbol data stream, its probability is 3/10.

2. Context-based statistical model: the algorithm does not count the times a symbol

appears, but rather how many times it appears after a string (context) was seen.

3. Static-context-based statistical model: the string (context) that precedes the actual

symbol is fixed. The algorithm has preloaded bigrams (or trigrams) of the alphabet

used, but everything else stays the same.

4. Adaptive, context-based, statistical model: the context string is variable in length.

An order N algorithm starts storing and comparing strings with length N and

decrements the length by one symbol if no match is found, until the algorithm

 58

reduces to order 0, meaning that just the actual symbol, without any preceding

context string, is seen. If this symbol was not seen before, the algorithm assigns a

probability to this symbol and stores it.

 Some prediction methods use statistical data to guess the next input and compare

the guess with the actual symbol. If they match, a hit symbol is output; otherwise, a miss

symbol plus the original data is output, as explained in Chapter II. Other methods like

PPM (explained below) use this statistical data with an arithmetic encoder.

2. PPM

 Prediction with partial-string matching (PPM) of order N is an algorithm that uses

a set of N+1 Markov predictors [3]. PPM computes the probability of a symbol and sends

this symbol to an adaptive arithmetic encoder to be encoded with the following

probability: the length of the encoded data in bits = −log2 (Probability). If symbol S was

seen previously with probability ½, its encoded length is: −log2 (1/2) = 1 bit.

 The algorithm reads a symbol S and searches the order N context (the length N

string seen before S). If the order N string was seen before, followed by the symbol S, a

probability P of this occurrence exists. S is sent to the encoder to be encoded with

probability P, and the probability is then updated to compute this new occurrence.

Otherwise, if no string that precedes S was found, the algorithm reduces to order N-1, and

a new search is performed. The process continues until a string matches or it reduces to

order 0, when a search is performed for S itself, without any context. If no match is found,

it switches to an order known as order -1: S is stored to the probability table and encoded

with probability 1. [should there be a period instead of colon after -1?]

 To keep the decoder consistent with the encoder, the algorithm needs to add a flag

each time the order of the context is reduced. This is accomplished using an “escape”

symbol, which is written to the output each time the order is changed. If the decoder

recognizes the escape symbol, it switches to the same order; the arithmetic encoder also

encodes the escape symbol with its probability. The worst case occurs when no match is

found: the encoder reduces to order -1, outputting N+1 escape code along with the

original data (arithmetically encoded with probability 1, the size of the alphabet).

 59

3. PPMA

 This method differs from PPM in the way it encodes the escape symbol. Instead of

just sending it to the arithmetic encoder, it fixes the escape symbol’s probability at 1/

(N+1), which is equivalent to assigning it the same count of 1 every time. Also, the

probability of the escape symbol is not computed together with the data probability.

4. PPMB

 The main idea of PPMB is to store only contexts that appear more than one time;

therefore, PPMB only updates the symbol probabilities after encountering the same

symbol twice. PPMB accomplishes this by subtracting 1 from the symbol count.

5. PPMC

 PPMC keeps track of all comparisons made during a search; all symbols that are

seen following the order N string are excluded from a new search if the algorithm shifts to

order N-1 (i.e., eliminates repeating symbols in lower orders). This makes sense because

if the eliminated symbol were the searched symbol, it could be compressed in step N, and

the algorithm wouldn’t be shifted to order N-1. The elimination of repeated symbols

increases the probabilities of real candidates for a match, improving the compression

ratio. For example, P=2/5 compresses to −log2 (2/5) = 1.32 bits (actually 2 bits). If one

repeating symbol is eliminated, the probability changes to 2/4. The bit count is –log2 (2/4)

= 1 bit.

6. VPC3

 VPC is the base algorithm used in TCgen (trace-compression generator), an

automatically generated trace compressor, which employs “value predictors to bring out

and amplify patterns in the traces so that conventional compressors can compress them

more effectively” [33]. TCgen is a pre-compression stage for other compression methods.

Based on several other hardware-compression proposals, we are convinced that a pre-

compression phase can effectively improve the trace-compression ratio and compression

speed.

 60

 The first method proposed was to use prediction to compress traces. VPC1

compares an eight-byte input with a series of predicted values, using 37 different

predictors. If at least one of the predicted values is correct, the algorithm outputs the

address only for the correct predictor. If no predictor predicts the input data, a miss flag is

output, together with the actual data. VPC2 uses gzip as a second-stage compressor, but

it’s very slow during decompression. Therefore, the final version, VPC3, does not try to

compress the trace; instead, it tries to output a stream that is optimized for a second stage

algorithm that compresses it. VPC3 is a lossless, single-pass, fixed-memory algorithm,

making it ideal for trace transformations.

 VPC3 uses four predictors: a last n values predictor, a stride predictor, a finite-

context-method predictor, and a differential finite-context-method predictor. These four

predictors “have been experimentally determined to result in a good balance between the

speed and the compression rate of the algorithm on the load-value traces”[34]. The three

traces used during the development of VPC3 are the PC and load values of every executed

load instruction, the PC and target of all indirect branch instructions, and the PC and

effective addresses of each executed store instruction, all from the SPECcpu2000

benchmark suite [34]. The algorithm tables are defined as having the columns correspond

to the type of predictor and the number of lines (L) equal to the quantity of predictions

stored for each predictor type. The number of stored predictions (L1=s and L2=t in the

following figures) under each type of predictor is limited by the available memory, and

has to be the power of two.

 In VPC3, the index of each table is encoded using a Huffman code to reduce the

index length of the most-used predictions. If more than one predictor is correct, the

algorithm chooses that with the smallest index. If no prediction is correct, the output is the

index of a predictor that already exists and is the closest to the actual data, together with

the difference between the dummy prediction and the actual data. Several other

enhancements are made: no repeated value is stored in the tables (tables only store

different values), the predictions are organized in a last-seen basis to explore locality

principles, and the Huffman codes are biased at the beginning to assign the shortest codes

 61

to the predictors with the lowest “learn time” (see Chapter II), based on previous analyses,

like the differential finite-context method [34].

 We have to consider also that “the compression rate depends not only on how

many of the trace entries are predictable but also on which predictor can predict them and

when a prediction is made since the length of the Huffman codes is different for different

predictors and changes over time” [34]. VPC3 requires 27MB of memory [38].

 The four predictors are described below:

a. The last n values predictor LV[n]: predicts the next input data based on the n

previously seen values. The last n previously seen values are stored into a FIFO

queue, and when a new data is input, it is compared with all n stored values.

Experimental analyses show that storing four values is enough for a good

prediction, outperforming other configurations [35]. See Figure 31.

Figure 31. LV[n] predictor with s lines (After [39]).

 62

b. Stride predictor ST[n]: the prediction is performed as before, storing the n last-

seen values, but instead of storing the data itself, the predictor stores the last-seen

value and the next n differences from it. To improve performance, a second

difference is also stored in a different table, but it’s updated only if this value is

seen twice [34]. See Figure 32.

Figure 32. ST[n] predictor with s lines (After [39]). The first column is the last-seen
value, and all others are differences from it.

c. Finite-context-method predictor FCMx[n]: this predictor reads the last x symbols

seen, stores them in a FIFO sliding window, and then stores the n values that

follow x in a prediction table, using a hash function. Every time a new string is

input, it is compared with the x values in the queue, and if they match, the next

value is predicted as being the one stored in the table addressed by the hash value.

The algorithm does not compare the input data with the x values in the first table.

For space/speed reasons, it just takes the hash of the input value and searches the

address pointed to by this hash in the second table; thus, there is no real need for

the first table. The values in the second table are only updated if they have made

incorrect predictions twice after a good prediction, requiring an additional

structure. See Figure 33.

 63

Figure 33. FCMx[n] predictor with L1 = s and L2 = t (After [39]).

d. Differential finite-context-method-based predictor DFCMx[n]: this method is the

same as the previous method, except that the stored predictors are differences from

the last seen one. Using differences instead of values can improve the prediction

accuracy by as much as 33% [36]. The hash function is responsible for part of the

performance of this method, and any change in the hash function can improve its

performance [37]. See Figure 34.

Figure 34. DFCMx[n] predictor with L1 = s and L2 = t (After [39]).

 64

7. TCgen

TCgen, is a tool that automatically generates portable, customized, high-
performance trace compressors. All the user has to do is provide a
description of the trace format and select one or more predictors to
compress the fields in the trace records. TCgen translates this specification
into C source code and optimizes it for the specified trace format and
predictor algorithms[38].

 TCgen uses VPC3 as its base algorithm; it transforms traces into highly

compressible streams that are sent to a general-purpose compressor. The input data is

divided into fields according to the trace specification; a field can be the program counter,

the memory address, the instruction counter, etc. Each field is input and compared with a

set of predictors; if at least one predictor is correct, the address of this predictor is output

to a stream. Otherwise, if no predictor is correct, a miss flag is output to the same stream,

and the original data is output to a different stream.

 At the end of this pre-compression phase, we have the trace file divided into two

streams: a pre-compressed stream, composed of the address of good predictors plus the

miss flags for the non-predicted values, and an uncompressed stream, composed of the

miss-predicted values, which is searched during decompression when the miss flag

appears in the pre-compressed stream. Both streams are further compressed with a

general-purpose compression algorithm like GZIP.

 The predictors are stored in tables addressed by an index, which is a modular

function of a predefined field (ID field) and the number of lines in the table (ID mod s).

The ID is computed from one specific index of one field in the algorithm. This field

(pointed to by the user as the ID field) functions as a reference for the other predictors,

but does not have a reference for itself. Therefore, the field defined as the ID field must

have only one line in its prediction table (L1=1) and must be carefully chosen.

 To generate the C code for this process, the user navigates to the following

website: http://www.csl.cornell.edu/~burtscher/research/TCgen/ and types the trace

specifications: the header length, if there is a header; the lengths of the fields in bits; the

types of predictors to be used, and the predictor specifications (the ID field and the

compressor to be used on the second phase), all following the grammar below:

 65

TCgen Trace Specification;

size-Bit Header;

size-Bit Field 1 = {L1 = s, L2 = t: LV[n], ST[n], FCMx[n], FCMx[n]};
.
size-Bit Field .. = {L1 = s, L2 = t: LV[n], ST[n], FCMx[n], FCMx[n]};

ID = Field ..; the L1 in this field has to be 1

Compressor = ‘general purpose compressor’;
Decompressor = ‘general purpose decompressor’;

 When specifying the traces, the user must provide an e-mail address, and the

generated C code is sent to the user, who saves and compiles it. Other usage details can be

found in [39].

G. FURTHER DISCUSSION

1. Combining

 Dictionary methods compress strings of symbols (helping compression) but ignore

the context (hindering compression), while prediction methods have a probability memory

(helping compression) but compress one symbol at a time (slowing compression).

Therefore, a hybrid method that combines the advantages of both approaches is needed.

Such a method exists: dictionaries that use some context and probability when they store,

for example, the last-seen value, or search the dictionary by some order, like LZW, LZT

or LZMW.

2. Data-Compression Patents

 Having presented several compression algorithms, and before we proceed to

implementations, we discuss patents, since most implementations of these algorithms are

proprietary. David Salomon says: “It is generally agreed that an invention or a process is

patentable but a mathematical concept, calculation, or proof is not. An algorithm seems to

be an abstract mathematical concept that should not be patentable. However, once the

algorithm is implemented in software (or in firmware) it may not be possible to separate

the algorithm from its implementation. Once the implementation is used in a new product

 66

(i.e., an invention), that product—including the implementation (software or firmware)

and the algorithm behind it—may be patentable [9]. ”

 From the presented algorithms, GZIP is “free from patent claims, is faster, and

provides superior compression [9],” is a good method for future implementations, and is

used by AHA (AHA products group of Comtech EF Data Corporation) in its data-

compression hardware.

3. Trace Compression

 The primary motivating application of our proposed 3D data-ransformation

processor is to collect, compress, encrypt, and transmit traces for analysis of program

behavior for processor design and security research. The kind of trace to collect is a

crucial parameter of the design because it will guide the choice of algorithm: the trace has

to be complete enough to represent the processor’s behavior and concise enough to allow

good compression. Jones and Zorn present guidelines for the format of traces [43]:

 1. Expressiveness: “The trace format must be able to express enough information

that the resulting traces can be used to make research contributions in the field” [43].

 2. Compactness: “Compact encodings allow larger, more representative traces to

be created and shared” [43].

 3. Flexibility: “Perhaps the most important goal is to design with the

understanding that additional information (and potentially entirely new formats) will be

needed” [43].

 Traces can record different information depending on the objectives of their

collection and analysis. “For example, control flow analysis needs only a trace of

executed basic blocks or paths. Cache studies require address traces, and more complex

processor simulations need instruction words as well. Branch predictors can be evaluated

using traces with only branch-relevant information, such as branch and target addresses,

and branch outcome, and ALU unit simulations require operand values. For example, the

Dinero trace format record consists of the address of memory reference and the reference

type—read, write, or instruction fetch, and BYU traces also include additional

information, such as the size of the data transfer, processor ID, etc.”[32]. ATUM traces

(address tracing using microcode) also include the process ID and encompass information

 67

about system activity, such as mapping between physical and virtual memory at each

translation look-aside buffer miss [44]. An IBS trace record contains the operation code

and the user/kernel indicator [31].

 Our proposed system will collect traces using hardware probes (direct links)

already built in the computation plane that provide the necessary access for the control

plane and allocate space for buffers and dictionaries without increasing the area. In the

following, we summarize some comments about hardware trace collection from [45].

 The first consideration is the size of the buffers at the trace collection point; the

sizes must be chosen carefully in order not to stall the compressor or slow it down. “If a

long, continuous address trace is desired, then the buffer must either be very large or there

must be some way to stall the host whenever the buffer becomes full. It is usually only

possible to stall the processor,” which is not desirable in our case [45]. “If there is no way

to stall the system, then several discontinuous address-trace samples can be acquired and

concatenated together. In either case, the resulting trace exhibits a form of distortion that

we call trace discontinuity” [45]. Special hardware has been built to avoid stalling the

processor. Biomation Corporation built a trace-collection system in 1983 with 80 million

trace-buffer entries. One way to reduce the size of the traces is to ignore some primary

caches and TLB behavior; although they are important, “a trace of just cache misses is by

no means worthless, (…) such a trace can still be used to simulate other cache

configurations, albeit subject to certain restrictions” [45]. Those are approaches that

reduce the efficiency of our architecture, and are not desirable. If the trace buffer is

sufficiently large, we can capture complete sequences with “both user and kernel memory

references, and free of most forms of trace distortion” [45]. Since some Intel processors

have more than 10 MB cache, similar memory can be implemented in the same area on

the control plane, allowing more than 130,000 entries of 64 bits, a figure that can be used

as the size of the trace-compressor buffers.

 Another important consideration is that the collected traces are difficult to

interpret. “Hardware events such as cache misses, integer and floating-point-unit stalls,

exceptions and interrupts all must be separated from run cycles to determine the actual

type (read, write, execute) and size (word, half word, byte) of the memory references

 68

made by a monitored processor” [45]. We may also provide some access to the OS data

structures to emit markers or other clues to reverse-translate the physical addresses

captured by the control plane to their matching virtual addresses, if the analyzer requires it

[45].

 The number of processors is another issue. “Parallelism complicates tracing by

increasing the volume of data that must be recorded, introducing uncertainty into the

ordering of instruction and memory references between processes, and by allowing

programs with indeterminacies that are affected by tracing” [46].

 The number of processes can also determine the trace formats, “Some systems can

trace all processes running on a computer, sometimes even including the operating

system.. The values of a multitasking trace depend on its intended application” [46].

 Fortunately, traces have similarities and properties that are not fully harnessed by

general-purpose compression, but can be exploited by a pre-compression phase.

“Combined instruction and data address traces can be compressed by recording only

offsets from previous trace records of the same type, by linking data addresses to the

corresponding dynamic basic blocks or loops, or by regenerating values using abstract

execution or prediction” [29]; we summarize some of these techniques in the following.

H. 2D COMPRESSION HARDWARE

1. Parallel Dictionary LZW Plus Adaptive Huffman [27]

 Figure 35 shows the proposed architecture, which uses two-stage compression

hardware. In the first stage, the string is encoded using n parallel dictionaries, each with a

different size word. The store and search processes are performed simultaneously in all

dictionaries. If a match is found, the codeword for the match is output with its dictionary

address. The dictionary of order one has the symbols of the alphabet preloaded (see LZW

description). In the second stage, the output of phase one, which is a fixed-length string

consisting of a match/miss codeword along with a data address, is encoded using an

adaptive Huffman method. The idea is to use the statistical distribution of

address/codeword to turn it into a variable length code using fewer bits. Instead of using a

tree structure, it uses an ordered list to save search time and memory space. The order is

 69

established by swapping one symbol with its adjacent symbol when it appears; therefore,

most symbols encountered traverse the beginning of the list.

 The hardware architecture of this technique is implemented as follows:

The four dictionaries are implemented with the use of a 296-bit content addressable

memory (CAM): (296 = 64 bits (B) x length 2 dictionary word (w) + 32B x 3w + 8B x 4w

+ 8B x 5w). A five-bit shift register is used to store the input, and a priority encoder is

used to select the longest match.

The adaptive Huffman scheme is implemented using a 414-bit CAM for the

priority list. The resulting chip has a 4.3 x 4.3 mm2 area, with a core area of 3.3 x 3.3

mm2, power dissipation between 632 and 700mW, and operating frequency of 100 MHz

(limited by the cycle time of the CAM) [27]. The amount of data reduction is about

39.95% in average (a compression ratio of 2.5:1).

Figure 35. Hardware proposal of Parallel Dictionary LZW plus adaptive Huffman
showing the four variable-length dictionaries on the left for word lengths from five

to two, and the adaptive Huffman priority queue on right (From [27]).

2. X-MatchPRO [28].

 This hardware uses a fixed four-byte dictionary word of previously seen symbols

and a match or partial match of those symbols, shown in Figure 36. The dictionary is

 70

updated using a move-to-front strategy (MTF). When it becomes full, the last symbols are

deleted. The token has four fields: a match/miss bit, the matched address, the Huffman-

encoded match type (full, partial, run length), and the unmatched literals. The run length

is an eight-bit field that encodes the length of a match, from 0 to 255 (28).

 The hardware architecture of this scheme is implemented as follows:

X-MatchPRO uses a 16-bit data register and six registers for command and control; the

input data can vary from eight bytes to 32 Kbytes. The dictionary uses a 16 x 4

bytes/word CAM with predefined word lengths of 16, 32 or 64 bytes. Input data is

compared with the dictionary data using XOR gates; AND gates are used to select just

one output bit per word position. The clock period is reduced with pipeline registers to

achieve better throughput. The percentage of data reduction is about 51% to 58% on

average (a compression ratio between 1.96:1 and 1.72:1).

Figure 36. Hardware proposal of X-MatchPRO, showing at the far left the dictionary
CAM, and at the center the Huffman coder (From [28]).

3. Branch-Predictor Compression Plus Variable-Length Code [29]

 The focus of this scheme is to compress execution traces so that a program’s

execution path to be recreated for debugging analysis by recording the program counter

(PC) when changes in the program flow occur, and recording one of the following:

 71

 • The branch target address (BTA), direct or indirect, in case of a control-

flow instruction; or

 • The exception-handler target address (ETA), in case of an exception.

 PC values are substituted by the sequential counting (SC) of instructions executed

since the last change in the control flow [29].

 The key idea is to implement branch-prediction hardware on the host machine, and

software for debugging analysis on the analyst machine, as in Figure 37. The host outputs

data (indirect/direct BTA or ETA) only when a miss-prediction event occurs, together

with a counter (SC) from the previous miss prediction. If an indirect BTA is the miss-

predicted event, it also outputs the correct target address (TA); during the debugging

process the software will follow the same original execution and will count down starting

from the miss-prediction counter (SL) received from the hardware. When the countdown

reaches zero, the software knows that the actual prediction is wrong, and will take the

opposite branch (opposite BTA) for a direct BTA, the received TA for an indirect BTA,

or handle the exception (ETA). The output trace is also coded using a variable-length

code.

 The hardware architecture of this proposal is implemented as follows:

The compression hardware is coupled with the CPU from which it takes the primary

information such as the BTM, ETA, PC, instruction type, and exceptions. The TA output

is the difference between the TA and the previous TA output using a simple XOR

scheme. The compression ratio achieved is 1:419 (using 2,800 logic gates).

 72

Figure 37. Branch-predictor compression plus variable length code (From [29]). This
figure shows the host machine with the hardware model at the top, and the software

in the analysis machine at the bottom.

4. Stream-Based Compression (SBC) [30], [31]

 For this scheme the authors base their algorithm on the fact that “most programs

generate only a small number of unique instruction streams…. The starting address (SA)

and length (SL) uniquely identify an instruction stream” [30], and instruction addresses

often have a regular stride [30], [31] show in Figure 38. They give as an example the fact

that “the average instruction stream length is about 12 instructions for the SPEC

CPU2000 integer applications and about 117 instructions for the floating-point

applications, with a maximum length of 3162 instructions and a minimal length of one

instruction”[30], [32]. The compression is divided into instruction-address compression

and data-address compression, generating two output files that can be further compressed

using a dictionary method.

 The stream-based compression method simplifies (compresses) the traces by

dividing them. The addresses (SA) are kept in stream caches and stream buffers, and

instructions are kept in data-address stride caches (DASC). During a search, if a match

occurs, just the pointer to the data is output, as follows [30].

 73

 The trace is read, the instruction type and first data address are kept in the stream

buffer, and the stream length (SL) is incremented until the next stream is detected. When

a new stream is detected, the algorithm stops this phase and performs a search for the old

stream in the stream cache (using a hash table to speed up the process). If there is a match

(hit), the output is an index to the stream-cache table, which points to the field that

contains the data address (SA) and length (L). If no match is found (miss), the algorithm

outputs a miss flag, the first data address, and its length, and updates the stream cache.

The decompression similarly accepts as input the stream index, and then the

corresponding stream table field is accessed, giving the address of the first instruction,

and respective stream length.

 For the data address, the approach is to read the actual data address and the

respective program counter. From the program counter, an index is computed, which is

the index into the stride table. This table contains previous data addresses (LDA) and

previous strides. The address pointed to by the index is compared with the actual address.

If the stride remains the same as the previously stored stride, the algorithm outputs a one-

bit hit flag. If the stride changes, the new data address and stride are written to the table,

and the miss flag and the actual address are output.

 The hardware architecture of this scheme is implemented as follows: the overall

size is 7629 bytes. Due to its small size, its speed of operation is the same as the CPU

clock frequency [30]. This makes it suitable for a system-on-chip (SoC) type of hardware

architecture. The compression ratio achieved is 125.9:1 for instruction-address traces and

6.1:1 for data-address traces.

 74

Figure 38. Stream-Based Compression (From [30], [31]). The compression is divided
into instruction and data-address compression, generating two output files that can
be further compressed using a dictionary method. Instruction address compression

(left) is divided into address (SA) and length (SL), which are compared with
cached values. If a match occurs, a hit flag is output. In data-address compression
(right), input data is compared with cached data. If the strides remain the same, a

hit flag is output.

5. Reduction, Encoding Plus LZ [47]

 This scheme has three phases: the first phase is branch/target filtering, which

computes only discontinuous addresses to reduce the trace size; the second encodes the

first phase’s addresses to reduce the average bit length; and the third phase is a common

LZ compression algorithm. This method also has the goals of a real-time compression and

compact size compatible with system-on-chip (SoC) implementation.

 The trace has sixteen bits for each CPU cycle, five bits of pipeline status

information, eight bits of indirect PC, and three bits of breakpoint qualification

information. The author argues that “from these addresses, host-side debug software can

reconstruct the instruction-execution trace” [47].

 The first phase, shown in Figure 39, takes advantage of the sequential instructions

presented inside a basic block (a sequence of linearly executed instructions initiated by a

 75

target instruction and ended with a branch instruction). The algorithm stores a sequential

offset value from a basic block in one register, and every time a new data is input, the

algorithm compares the offset with the stored one. If the offset is different, a new branch

has occurred. The actual data is a target address for the next basic block, and the previous

data is the branch address of the previous basic block. This phase only outputs the target

and the branch addresses; all other traces are omitted, as they are reconstructed from the

stored offset.

Figure 39. Phase one (From [47]). The hardware inputs all traces and outputs just the
target and branch examples.

 The second phase receives the target and branch addresses from phase one and

encodes it. To encode the target address, there are two mechanisms: the first is a slicing

module that divides the sixteen-bit address into small four-bits chunks and appends a 1

between chunks that are part of the same address or a 0 if they belong to different

addresses. The second mechanism is a slice encoding that, assuming consecutive target

addresses from different basic blocks are similar, takes the chunks from the actual target

address and compares them with the same chunks from the previous target address,

outputting just the different chunks. All chunks are sent to an output FIFO buffer and to

phase three, as shown in Figure 40.

 For the branch addresses, this method exploits the property that in the same basic

block, the difference between the target address and the branch address in binary has a

 76

large number of leading zeros in the most significant bits, followed by a small string of

ones and zeros that represent the difference. The algorithm exploits this property by

slicing the address into equal chunks and computing the difference chunk-by-chunk,

outputting a chunk only if the difference is nonzero. Therefore, the algorithm represents

the branch addresses as a difference from the target address in the same basic block and

eliminates all leading zeros, reducing the bit sizes of these addresses.

Figure 40. Phase two (From [47]). The hardware inputs just the target and branch
addresses. For the target address it outputs the comparison that differs from the
previous target address sliced chunk-by-chunk, and for the branch it outputs the

difference from the respective target address.

 Phase three is a simple LZ dictionary that receives data from phase two and

compares with a dictionary of previously seen data, as explained before. The advantage is

that after slicing data into small chunks during phase two, the size of the dictionary in

phase three is much smaller, saving hardware cost and area.

 The proposed hardware was implemented in Verilog HDL RTL code, and the

compression ratios achieved are 1:3.3 for phase one alone, 1:7.2 for phase one plus two,

and 1:454.5 for all three phases combined.

6. IBM/AHA [40][41]

 As an example of a commercially available 2D compression coprocessor, we

describe the IBM/AHA products that use ALDC, an IBM compression algorithm. We

 77

highlight it because AHA, a group from Comtech EF Data Corporation, a subsidiary of

Comtech Telecommunications Corporation, is the “recognized global leader in satellite

bandwidth efficiency and link optimization” [42].

 The basic blocks are the microprocessor interface, the input/output interfaces, and

the compression/decompression engine, as shown in Figure 41. The microprocessor

interface receives the control signals and provides status information to the

microprocessor, via externally accessible registers. The input/output interfaces have

sixteen-byte FIFO buffers, and the coprocessor receives a single clock input. From the

clock reference, it will generate all internally needed clock signals. The hardware can also

interrupt data input/output when an almost-full buffer flag is raised, meaning that the

device needs more time to transform data.

 The hardware architecture of this scheme is implemented as follows:

 The hardware is a 28 x 28 x 3.8 mm device with 144 pins. It receives a 5 (+- .25V)

VDC power supply and a single clock signal. It is implemented in 0.8 micron CMOS,

packed flat in plastic with a molded heat sink. The compression speed is up to 40 MB/s.

Other variants can achieve 80 MB/s.

 A 512-byte CAM is used for compression to maintain the history buffer. During

decompression, a 512-byte RAM is used for the same purpose, and each status register is

two bytes wide.

 To start compression, the microprocessor sends the appropriate control signal to

the microprocessor interface, and the signal is then forwarded to the appropriate register,

which is read and decoded. The first data input is the size of the file to be compressed.

Compression starts, data is output as it becomes available, and compression ends when

the data counter reaches the size of the input file. This counter is a 32-bit register,

allowing a maximum of four gigabytes of data to be transferred. Therefore, this is a

limitation, as data has to be segmented into four gigabyte chunks. The reliability average

failure rate is less than or equal to 100 PPM. The compression ratio achieved is 3:1.

 78

Figure 41. The AHA-ALDC hardware is implemented using a series of 2MB registers
in the processor interface, two sixteen-byte FIFO buffers in the interfaces to ports
A and B, a 512-byte CAM for the ALDC compression dictionary and a 512-byte
RAM for the ALDC decompression dictionary. The device is 28 x 28 x 3.8 mm,
and the coprocessor achieves a compression ratio of 3:1 and a speed of 40 MB/s

(From [41]).

I. USAGE SCENARIOS

We present two scenarios in which our proposed 3DIC system can be applied and

a third general-application scenario that requires modifications from our original proposed

design.

Scenario one: Real-time analysis of malicious behavior. The ability to monitor

computation planes fabricated in untrusted foundries by collecting, compressing, and

encrypting traces using a low-cost, efficient control plane fabricated in a trusted foundry,

providing significant benefits to trustworthy system design. The device sends the

compressed and encrypted trace over the network to an analyzer that can automatically

recognize suspicious behavior and alert the analyst. The large investment in the

development of this architecture is amortized across many users, including ordinary

customers who do not require a control plane to be attached and customers with high

trustworthiness requirements who will purchase a device with a control plane attached.

 79

Scenario two: Real-time analysis and debugging of software. As explained above,

traces are helpful in tracking program execution behavior and determining where and

when problems occur. By collecting and compressing those traces in real time, an analyst

can speed up the analysis process. Also, by implementing a general-purpose processor in

the computation plane, the cost of development of this 3D architecture can be amortized

across many customers.

 Although we are just discussing trace compression in this thesis, our proposed

architecture is not restricted to this domain. Our proposed architecture can also be used

for other scenarios, such as satellite compression of hyper-spectral data. Normal images

consist of pixels, which are normally 24 bits long, to represent 16.78 million colors.

Although this seems sufficient, “There is a large (and growing) field of applications that

require images where each pixel is represented by hundreds or even thousands of bits.

Such a large set of data is no longer referred to as an image, but is termed hyperspectral

data” [9].

 Military satellites do not rely on image sensors only: enemy equipment can be

hidden below some vegetation coverage. Therefore, a satellite “has to measure the

radiation reflected from each point on the ground in many wavelengths” [9]. “A typical

spy camera consists of a set of sensitive sensors that can measure and record radiation in

perhaps 250 frequency bands,” much more than the visible frequency boundary, “thus,

each ‘pixel’ in the image taken by such a camera consists of 250 numbers, each an integer

of at least 16 bits” [9].

 For example, “the AVIRIS sensor (airborne visible/infrared imaging spectrometer)

consists of three sensors of 64 frequency bands each plus a fourth sensor with 32 bands,

for a total of 224 bands” [9]. Other examples include radar, radar altimeters (both

microwaves and laser), radiometers, photometers, sonar (which is a hyper-spectral

application because different sound frequencies penetrate the water and are reflected from

objects in different ways [9]), medical imaging, and much more [9]. All of these

applications need to compress data and send it for analysis, processing, and presentation

as quickly as possible, and 3D compression/crypto hardware can provide the solution by

 80

reducing the data size by placing the data transformation engine close to where the data is

generated, reducing the overall cost, size, and duration of data manipulation.

J. PERFORMANCE NUMBERS

 This topic provides figures from the literature for comparing compression

algorithms and their hardware implementations. The figures in each table correspond to

the same data, and they originate from the literature cited in the references.

COMPRESSION

RATIO

MEMORY

[bytes]

Adap Huffman 62.7 8K

LZW 44.3 48K

LZ78 39.6 350K

Arithmetic 36.6 32-1400K

LZ77 28.4 8K

LZSS 27.3 2K

Table 2. Performance figures from the literature on some of the presented
algorithms: compression ratio and memory required for compressing the same

data as a means of comparison (From [26]).

 81

PR
O

C
ES

S

[m
ic

ro
ns

]

G
A

TE
S

[K
]

SP
EE

D

[M
H

z]

TH
R

O
U

G
H

PU
T

[M
B/

s]

A
LG

O
R

IT
H

M

C
O

M
PR

E
SS

IO
N

R
A

TI
O

A

R
EA

[m
m

]

Filter/Code +

LZ
- 51 185 96

Filter/Code

+ LZ
6.36 -

ALDC1-40S 0.8 70 40 40 ALDC 3 28 x 28

PDLZW

+AHDB
0.35 130 100

Compr:16.7-125

Decompr:25-83

LZW +

Adapt

Huffman

2.5 -

Hi/FN 0.35 100 80 80 LZS 2.25 -

AHA 3521 0.5 - 40 40 ALDC 2.25 -

AHA3580 - - 80 80 ALDC 2 14 x 14

X-Match PRO 0.18 - 50 200
X-Match

PRO
1.96 -

AHA3231 0.5 - 40 40 LZ78 1.92 -

Table 3. This table summarizes performance figures from hardware
implementations in the published literature (From [28]). The figures are

organized in descending order of compression ratio and throughput

 COMPRESSION RATIO
MEMORY

[bytes]

GZIP-9 3.05 -

GZIP-1 2.6 -

LZS 2.3 8K

ALDC 2.1 512

VPC3 - 27M

Table 4. Like Table 3, this table summarizes compression ratios and memory
requirements of some of the algorithms presented for compressing the same

data as a means of comparison (From [26]).

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

IV. CRYPTOGRAPHY

A. INTRODUCTION

Cryptographic coprocessors are used in a variety of systems for which the

efficiency of encryption and decryption is crucial. Originally developed for military

cipher machines [48], cryptographic coprocessors have uses in smart cards, banking,

telecommunications, networking, aerospace, and high-assurance computing platforms. A

crypto coprocessor is a custom circuit for carrying out cryptographic transformations,

often embedded in a tamper-resistant packaging. Systems will often combine a

cryptographic coprocessor with a general-purpose processor, key storage, and other

elements. A crypto coprocessor may implement just one algorithm or may support a

variety of ciphers, e.g., DES, RSA, SHA-1, etc. A successful design and implementation

requires careful balancing of tradeoffs between speed, cost, power, and security.

B. DESCRIPTION OF A CRYPTOGRAPHIC COPROCESSOR

A cryptographic coprocessor is a special-purpose computing environment, many

of which environments are designed to withstand various kinds of attacks, e.g., physical

probing or side-channel analysis [49], whereas others depend for protection on limiting

access to the device. According to Smith and Weingart, crypto coprocessors are

“computational devices that can be trusted to execute their software correctly, despite

physical attack” [50]. Crypto coprocessors support many applications by implementing

various cryptographic operations such as key distribution, key management, the

management of digital certificates, encryption mechanisms, and decryption mechanisms.

In general, a cryptographic coprocessor is a hardware device comprising the

following parts: (1) a CPU, (2) bootstrap ROM, and (3) secure non-volatile memory [51].

In the majority of cases, this specific hardware device is physically shielded to protect it

from tampering and side-channel attacks, and the I/O interface is the only way to access

the internal state of the device. The device stores cryptographic keys securely. A crypto

coprocessor can contain special-purpose hardware in addition to a general-purpose CPU

and memory, e.g., high-speed encryption/decryption circuitry [51].

 84

The IBM 4758 and its successor, the IBM 4764, are two secure coprocessors in

the market [52],[53]. Several research and development initiatives occurred prior to the

development of the IBM secure coprocessors. Steven Kent’s 1980 thesis explored the

application of what he named “tamper-resistant modules” (TRMs) to protect software

[54]. Steve White and Liam Comerford at IBM Research implemented ABYSS (A Basic

Yorktown Security System), an architecture that supports and ensures trusted execution of

software [55]. Later, Steve White and his colleagues integrated the ABYSS design into an

enhanced system, named Citadel [56], [57]. Some of the Citadel prototypes from IBM

became the foundation of the Dyad project, built by Bennet Yee and J. D. Tygar in the

early 1990s [58], [59], [60], [61]. Finally, Yee and Tygar developed four types of

electronic-commerce applications on top of a secure coprocessor, including copy

protection for software, electronic cash, and electronic contracts.

C. THE HSSEC HIGH-SPEED CRYPTOGRAPHIC COPROCESSOR

 In our proposed 3DIC implementation of a data-transformation coprocessor, we

take inspiration from the HSSec high-speed cryptographic coprocessor [62].

 Kakarountas et al. designed HSSec [62], to implement two hash functions, SHA-1

and SHA-512, and the symmetric block cipher AES-128 [62]. We share HSSec’s design

goal of minimizing area and we save some room in the control plane for the compression

coprocessor. We also follow HSSec’s design goal of maximizing throughput, which

HSSec achieves using parallelism. Finally, the HSSec system can operate in electronic

codebook (ECB) and cipher-block chaining (CBC) modes. The HSSec achieves a

throughput of Gbps (AES, SHA-1 and SHA-512) for XILINX’s Virtex II FPGA family

[62].

 We first describe in depth the cryptographic functions of the coprocessor, AES-

128, SHA-1, and SHA-512. Next, we present the architecture of the HSSec coprocessor.

Then, we present scenarios for utilizing a cryptographic coprocessor. Finally, based on

analysis of the literature and other resources on cryptographic algorithms, we study the

performance of AES-128, SHA-1, and SHA-512, gathering hard performance figures,

including clock rate, throughput, and power consumption.

 85

1. SHA-1 algorithm

SHA-1 (Secure Hash Algorithm) is a cryptographic hash function designed by the

National Security Agency and published by NIST as a U.S. Federal Information

Processing Standard. SHA-1 is the most widely used of the existing SHA hash functions,

and it is employed in several widely used security applications and protocols. SHA-1 is an

iterated hash function with a 160-bit message digest. According to NIST, it is called

secure because it is not computationally feasible to either 1) create a message that can be

mapped to a given message digest or 2) create two different messages resulting in the

same message digest [64]. Any change applied to a message will produce a totally

different message digest. SHA-1 uses word-oriented operations on bit strings, where each

word consists of 32 bits [63].

SHA-1 is adequate for hashing a k-bit message, where . The algorithm

consists of two stages: preprocessing; and computation of the hash [64]. The first stage

pads the message and divides it into 512-bit blocks. It next determines the initialization

values to be used in the next stage. The second stage generates a message schedule from

the padded message and uses this message schedule, together with functions, constants,

and word operations, to iteratively produce a series of hash values, one for each round.

Each round uses the result of the previous round; SHA-1 requires 80 rounds to generate

the 160-bit message digest [62]. The message digest is determined from the final hash

value resulting from this iterative process. Appendix A provides a detailed explanation of

the entire SHA-1 process.

2. SHA-512 algorithm

 SHA-512 (Secure Hash Algorithm) is a cryptographic hash function designed by

the National Security Agency and published by NIST as a U.S. federal information-

processing standard. According to NIST, it is secure because it is computationally

infeasible to: (1) find a message that can be mapped to a given message digest or (2) to

find two different messages that map to the same message digest. Any change to a

message will produce a totally different message digest.

640 2k< <

 86

The algorithm consists of two stages: preprocessing; and computation of the hash

[64]. The first stage pads the message and then divides it into m-bit blocks. It then

determines the initialization values needed in the next stage. The hash-computation stage

first generates a message schedule from the padded message and it uses this message

schedule, together with functions, constants, and word operations, to iteratively generate a

series of hash values. The final hash value resulting from this iterative process is the

message digest.

SHA-512 is adequate for hashing a k-bit message, where . The

preprocessing phase pads the message and divides it into 1024-bit blocks. These specific

blocks are needed to generate the message schedule. SHA-512 uses 80 rounds to generate

the 512-bit message digest [62]. Each round requires the result of the previous round.

Appendix B provides a detailed explanation of the entire SHA-512 process.

3. AES-128 algorithm

 AES is a round-based symmetric block cipher. It processes 128-bit data blocks and

uses a key whose length can be 128, 192, or 256 bits [66]. Table 5 shows the available

combinations of key, round, and block. Our proposed 3DIC incorporates AES-128

circuitry.

 Key Length

(Nk words)

Block Size (Nb

words)

Number of

Rounds (Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Table 5. Key–Block–Round Combinations (From [66]).

a. AES-128 Transformations

 AES-128 belongs to the family of round-based symmetrical block ciphers.

AES-128 accepts a 128-bit data block as input and performs many different

transformations on this block. During the encryption phase, the input block of the AES is

plaintext, and the output block is ciphertext. All the other intermediate values of the

1280 2k< <

 87

block, during its transformation from plaintext to ciphertext, are states [63], [67]. A state

is a four-by-four matrix of bytes, as depicted in Figure 42.

Figure 42. An AES state (From [66]). The first byte of the block resides in the upper-
left corner of the matrix; remaining bytes fill out the rest of the matrix. The AES

algorithm transforms a plaintext block to a ciphertext block. The intermediate
values of the block are states, and the final value of the block is the ciphertext.

 AES transforms the 128-bit input/output block as follows: the first byte of

the block resides in the upper-left corner of the matrix, and the remaining bytes fill out the

rest. The AES algorithm transforms a plaintext block to a ciphertext block. The

intermediate values of the block are states, and the final value of the block is the

ciphertext [63][67]. AES performs four transformations: SubBytes, ShiftRows,

MixColumns, and AddRoundKey, which are performed in that order repeatedly. Each of

these transformations, described below, maps a 128-bit input state to a 128-bit output state

[63]. A round of encryption applies each transformation once. For AES-128, ten rounds

must be performed, as shown in Table 5. The following describes the four transformations

in detail:

• The SubBytes transformation is “a nonlinear byte substitution that operates

independently on each byte of the state using a substitution table (S-box)” [66].

Each byte of the input state is replaced according to a substitution table (S-box)

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S

 88

[63]. The S-Box computes the multiplicative inverse in the Galois Field

with the irreducible polynomial followed by an affine

transformation (one transformation consisting of a multiplication by a matrix

followed by the addition of a vector) [63][66]. Figure 43 illustrates the effect of

the SubBytes transformation on the State. This transformation provides resistance

to differential and linear cryptanalysis attacks [65].

Figure 43. SubBytes() applies the S-box to each byte of the state (From [66]). Each

byte of the input state is replaced using the same substitution table (S-box).

• In the ShiftRows() transformation, the bytes in the last three rows of the state are

cyclically shifted over different numbers of bytes according to offset values

[66][67]. For instance, row one contains elements S1,0 - S1,1 - S1,2 - S1,3; after the

ShiftRows() transformation, row one is rotated by one position to the left. The first

row, r = 0, is not shifted. Figure 44 illustrates the ShiftRows() transformation [66].

This transformation causes diffusion of the bits over multiple rounds [65].

8(2)GF

8 4 3() 1m x x x x x= + + + +

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S-Box

Sr,c S’r,c

 89

Figure 44. ShiftRows() cyclically shifts the last three rows in the state (From [66]).

For instance, row one contains elements S1,0 - S1,1 - S1,2 - S1,3; after the ShiftRows()
transformation, row one is rotated by one position to the left. The first row, r = 0, is

not shifted.

• The MixColumns() transformation, according to NIST, “operates on the state

column-by-column, treating each column as a four-term polynomial” over Galois

field , and it is multiplied modulo with the constant polynomial,

[65], [66]. This transformation maps between

a column of the input state and a column of the output state [63]. Figure 45

illustrates the MixColumns() transformation.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S S’

Sr,0 Sr,1 Sr,2 S0,3 S’r,0 S’r,1 S’r,2 S’r,3

ShiftRows

8(2)GF 4 1x +

3 2() {03} {01} {01} {02}a x x x x= + + +

 90

Figure 45. MixColumns() operates on the state column-by-column (From [66]). This

transformation maps between columns of the input and output states.

• AddRoundKey: According to NIST in this transformation, “a round key is added

to the state by a simple bitwise XOR operation.” The AddRoundKey

transformation is self-inverting. It maps a 128-bit input state to a 128-bit output

state by performing an “xor” operation on the input state with a 128-bit round key

[63], [66].

The four transformations described above are applied to a 128-bit input

block in sequence in order to perform AES encryption or decryption. For both encryption

and decryption, the transformations are grouped into rounds. There are three different

types of rounds: the initial, the normal, and the final [63]. The transformations and

sequence of the rounds are depicted in Fig. 46. The number of rounds, Nr, depends on the

key size. AES -128 consists of the following basic steps [63]:

1. For a specific plaintext (κ), initialize state to be (κ), and execute

AddRoundKey, which performs an “xor” of the RoundKey with the state.

2. For each of the first nine rounds, perform SubBytes on the state using a

substitution table (S-box). Then, perform ShiftRows on the state, followed by

MixColumns, and AddRoundKey.

3. Perform SubBytes, ShiftRows, and AddRoundKey.

4. The ciphertext (λ) is the state.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S0,c

S1,c

S2,c

S3,c

S’0,c

S’1,c

S’2,c

S’3,c

MixColumns()

 91

Figure 46. The operation of the AES-128 algorithm, where Nr = 10 for cipher keys of

length 128bits (From [65], [68]). Each round uses a round key derived from the
original key (the round-zero key). Each round starts with an input of 128 bits and

produces an output of 128 bits. First, it performs AddRoundKey, using the original
key (the round-zero key). Next, for each of the first nine rounds, it performs
SubBytes on the state using a substitution table (S-box). Then, it performs

ShiftRows on state, followed by MixColumns and AddRoundKey. Finally, during
the tenth round it performs SubBytes, ShiftRows, and AddRoundKey using the

tenth round key. The ciphertext is the 128-bit output block.

Sub Bytes

Shift Rows

Add round Key

Plaintext

Add round Key

Sub Bytes

Shift Rows

Mix Columns

Add round Key

Sub Bytes

Shift Rows

Mix Columns

Add round Key

Ciphertext

Round 0 (initial round)

Round 1 (normal round)

Round 9 (normal round)

Round 10 (final round)

 92

b. AES-128 Key Expansion Process

 The initial 128-bit cipher key [63] is expanded to eleven 128-bit round

keys. The first round key is the cipher key (), and all subsequent round keys

are the result of applying a function to the previous round key. If this function is f, then

the process may be modeled as,

The AES-128 algorithm [66] takes the cipher key, K, and performs a key-

expansion routine to generate a key schedule. The key expansion generates a total of Nb

(Nr + 1) words, where Nb is the block size, and Nr is the number of rounds. If we use the

values in Table 5, we have a total of 44 words. AES-128 needs an initial set of ten words,

and each of the four rounds requires ten words of key data. The derived key schedule

consists of a linear array of four-byte words, denoted as [wi], with i belong in the range 0

<= i < 44. For the key-expansion process, two functions are required, SubWord() and

RotWord(). According to NIST, “SubWord() is a function that takes a four-byte input

word and applies the S-Box to each of the four bytes to produce an output word. The

function RotWord() takes a word [a0,a1,a2,a3] as input, performs a cyclic permutation,

and returns the word [a1,a2,a3,a0]” [66]. Figure 47 shows how the word array W

[0….43] is mapped to the corresponding eleven round keys.

Figure 47. Mapping of the key words to round keys (From [69]).

0RoundKey

1RoundKey f (RoundKey), for all 0 i 11 i i−= < <

 93

c. Electronic Codebook (ECB) and Cipher Block Chaining (CBC)
Modes

AES-128 supports five modes, including Electronic Codebook (ECB),

Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and

Counter (CTR) modes, which provide confidentiality [70]. For our proposed 3DIC

cryptographic coprocessor design, we have chosen the symmetrical block cipher AES-128

ECB and CBC modes.

 Electronic-codebook (ECB) mode partitions the message into several n-bit

blocks, adding padding if required, and enciphering each block [71]. A major advantage

of ECB is the ability to decrypt the blocks independently, in parallel. Also, if an error

occurs during transmission or encryption, the error is isolated and local, affecting only the

block in which the error occurred. However, that property can also be disadvantage. If the

same key enciphers more than one block, a cryptanalyst can decipher the message using

less effort than a brute-force attack. The electronic codebook (ECB) mode is defined as

follows [70]:

Where corresponds to the the jth ciphertext block, to the jth plaintext block,

 to the forward cipher function of the block cipher algorithm under the key K

applied to the data block , and to the inverse cipher function of the block

cipher algorithm under the key K applied to the data block .”

According to NIST, “in ECB encryption, the forward-cipher function is

applied directly and independently to each block of the plaintext. The resulting sequence

of output blocks is the ciphertext. In ECB decryption, the inverse-cipher function is

applied directly and independently to each block of the ciphertext” [70]. The resulting

sequence of output blocks is the plaintext. ECB mode is depicted in Figure 48.

1

ECB Encryption: C () for 1 .

ECB Decryption : () for 1 .
K

K

j CIPH Pj j n
Pj CIPH Cj j n−

= = …

= = …

Cj Pj

() KCIPH Pj

Pj 1() KCIPH Cj−

Cj

 94

Figure 48. ECB mode operation (From [70]). For a given sequence of
plaintext/ciphertext blocks, each block is encrypted/decrypted with the same key,

resulting in a string of ciphertext/plaintext blocks.

 Cipher-block chaining (CBC) mode [70], [71] computes the XOR of the

first plaintext block with an initialization vector (IV), which must be unpredictable.

Additionally, the integrity of the IV should be protected, although it does not necessarily

have to be secret. The j-th plaintext block is XORed with the (j−1)-th ciphertext block

prior to being encrypted with the block cipher [71]. More formally, the CBC mode is

defined as follows: “

PLAINTEXT

INPUT BLOCK

OUTPUT BLOCK

CIPHERTEXT

CIPHK

Encryption

INPUT BLOCK

OUTPUT BLOCK

PLAINTEXT

CIPHERTEXT

1CIPHK
−

Decryption

 95

Where corresponds to the the j th ciphertext block, to the jth plaintext block, IV to

the initializing vector, to the forward cipher function of the block cipher

algorithm under the key K applied to the data block X, to the inverse cipher

function of the block cipher algorithm under the key K applied to the data block X” [70].

 In CBC encryption [70], the first input block is computed by taking the

“xor” of the first plaintext block and the IV. The result of this XOR operation is the input

to the block cipher, which produces the first block of the ciphertext. Next, the XOR of the

first ciphertext block, and the second plaintext block is enciphered to produce the second

paintext block.

 In CBC decryption [70], to obtain any plaintext block (aside from the

first), the inverse cipher function is applied to the corresponding ciphertext block, and the

result is XORed with the previous ciphertext block.

Figure 49 depicts the operation of the CBC mode.

1 1

1

1
1 1

CBC Encryption: ()

 = () for 2 .

CBC Decryption: P ()

K

j K j j

K

C CIPH P IV
C CIPH P C j n

CIPH C IV

−

−

= ⊕

⊕ = …

= ⊕
1

1 P () for 2 .j K j jCIPH C C j n−
−= ⊕ = …

Cj Pj

()KCIPH X

1()KCIPH X−

 96

Figure 49. CBC mode (From [70]). In CBC encryption, the first input block is formed

by taking the “xor” of the initial block of the plaintext with the IV. The result of the
XOR is enciphered, resulting in the first block of the ciphertext. In CBC

decryption, in order to decrypt any plaintext block (aside from the first), the inverse
cipher function is applied to the corresponding ciphertext block, and the resulting

block is XORed with the previous ciphertext block.

4. The HSSec High-Speed Cryptographic Coprocessor Architecture

 The architecture of the HSSec cryptographic coprocessor [62] consists of a central

control unit and various processing elements that are peripheral to the central control unit.

For data input/output, a single 32-bit wide data bus is used. Also, for SHA-1 and SHA-

512 output, another 32-bit wide data bus is used. Table 2 shows the control signals. The

main purpose of the control unit is to coordinate data processing. It is also responsible for

the communication between the cryptographic coprocessor and the outside world. The

cryptographic primitives (AES-128, SHA-1, SHA-512) are arranged in a parallel

INPUT
BLOCK n

OUTPUT
BLOCK n

CIPHERTEXT
n

PLAINTEXT n

1CIPHK
−

CIPHK

CIPHERTEXT
n

INPUT
BLOCK n

OUTPUT
BLOCK n

PLAINTEXT nINITIALIZING
VECTOR

INITIALIZING
VECTOR

INPUT
BLOCK 1

OUTPUT
BLOCK 1

CIPHERTEXT
1

PLAINTEXT1

1CIPHK
−

CIPHK

CIPHERTEXT
1

INPUT
BLOCK 1

OUTPUT
BLOCK 1

PLAINTEXT 1

INPUT
BLOCK 2

OUTPUT
BLOCK 2

CIPHERTEXT
2

PLAINTEXT2

1CIPHK
−

CIPHK

CIPHERTEXT
2

INPUT
BLOCK 2

OUTPUT
BLOCK 2

PLAINTEXT 2

EN
C

R
YP

TI
O

N
D

EC
R

YP
TI

O
N

 97

orientation and utilize a common 64-bit global data bus. This bus is also responsible for

providing data to the memory unit and to the key scheduler.

The key-scheduler block [62] is fundamental to the proper execution and operation

of the three cryptographic algorithms supported by the coprocessor. More specifically, it

supports two core processes for the cryptographic algorithms. First, it controls the key

expansion of AES-128 and generates the message schedules. As described earlier, during

AES-128 encryption, the 128-bit cipher key must first be expanded to eleven 12-bit round

keys. The first round key is the cipher key (), and all subsequent round keys

are generated by applying a function to the previous round key. If f is this function, then

the process may be modeled as:

Therefore, the key scheduler has two basic transformation functions, RotWord and

SubWord, described above. The key scheduler also provides the constants required for the

hash functions. SHA-1 uses a sequence of eighty constant, 32-bit words, while SHA-512

uses the a sequence of eighty constant, 64-bit words.

 The mode interface [62] modifies input to the three cryptographic modules of the

cryptographic coprocessor.

 The memory block [62] consists of three main parts. The first part is a set of

registers used to store the initialization values required by the three cryptographic

algorithms. The second part is a general-purpose register file used for storing temporary

values for quick access. The last part is the padding unit used for storing fetched data.

Specifically, this part consists of eight 128-bit banks. Thus, each bank can support the

minimum data-input size required by AES-128. For as for SHA-1, the required number of

bits for the input data is 512; thus, four banks are needed. However, the required bits for

the input data for SHA-512 are 1024; thus, eight banks are sufficient. Therefore, using

eight banks, 128 bits each, for the padding unit meets the requirements for the three

cryptographic algorithms.

 Figure 50 depicts the architecture of the HSSec cryptographic coprocessor, and

Figure 51 shows the memory organization. Table 6 presents the control signals of the

coprocessor.

0RoundKey

1RoundKey f (RoundKey), for all 0 i 11 i i−= < <

 98

Figure 50. Main architecture of HSSec cryptographic coprocessor (From [62]). The
control unit manages data processing and communication with the outside world.

Cryptographic primitives (AES-128, SHA-1, and SHA-512) are arranged in a
parallel orientation and use a common 64-bit global data bus. The key-scheduler
block is used for key expansion and generating message schedules. The memory
block consists of a register file, padding unit, and S boxes. The mode interface is

responsible for modifying the input to the cryptographic primitives. The key
scheduler performs the RotWord and SubWord transformations described above.
The key scheduler also provides constants needed by the hash functions: SHA-1

uses a sequence of eighty, constant 32-bit words, and SHA-512 uses a sequence of
eighty, constant 64-bit words.

O
U

T_
SH

A1
/5

12

M
O
D
E

I
N
T
E
R
F
A
C
E

Main Data Bus(64-bits)

128

160

512

Register
File

S boxes

Padding
Unit

I/O INTERFACE

CONTROL
UNIT

KEY SCHEDULE UNIT

SE
N

D

R
EA

D
Y

O
U

T_
ho

t

O
U

T_
AE

S

D
at

a
I/O

 3
2

bi
t

SH
A

 O
U

T
 3

2
bi

ts

ke
y

M
O

D
E

AE
S_

en

SH
A1

_e
n

SH
A5

12
_e

n

cl
k

re
se

t

AES-128

SHA-1

SHA-512

 99

Figure 51. Organization of the memory block (From [62]). The memory block
consists of three main parts. The first part is a set of registers used for storage of the

initialization values required by the three cryptographic algorithms. The second
part is a general-purpose register file used for storing temporary values that can be

accessed quickly. The third part is the padding unit.

16
X

32 bits

Bank
1

Bank
2

Bank
3

Bank
4

Bank
5

Bank
6

Bank
7

Bank
8

Initialization
constants

SHA-1 & SHA-512

Register File

16
X

32
bits

16
X

32
bits

Data Bus- out (128 bits)

 100

Signal Description

READY Manages the synchronization of the coprocessor in

order to receive data. It also controls the flow of data.

SEND 1. Manages the synchronization of the coprocessor in

order to send data. It also controls the flow of data.

2. Used also as a halt signal.

AES_en Selection of AES-128 cryptographic algorithm.

SHA1_en Selection of SHA_1 cryptographic algorithm.

SHA512_en Selection of SHA_512 cryptographic algorithm.

MODE Selection of mode CBC or ECB for AES-128.

OUT_hot Determines which cryptographic algorithm is being

used to coordinate the control of the output.

OUT_AES Determines which cryptographic algorithm is being

used to coordinate the control of the output.

OUT_1/512 Determines which cryptographic algorithm is being

used to coordinate the control of the output.

KEY Key indication

Clk Clock signal

Reset Reset signal

Table 6. Control signals of the HSSec cryptographic coprocessor (After [62]).

5. Use Scenario

 The growing use of web services has resulted in an increased demand for

confidentiality, integrity, and availability of data. One way to address these requirements

is the use of the cryptographic coprocessor. In the following use scenario, we will explain

how crypto coprocessors help provide security. More specifically, we will explore how

credit-card transaction security is enhanced with the use of a cryptographic coprocessor.

Billions of transactions occur daily across the world over the web. A client sends critical

personal data such as credit-card information and transaction amount when purchasing an

 101

item. An attacker able to compromise the server can access the sensitive data and use it

for a variety of nefarious purposes:

• The attacker can use the credit-card information to conduct future transactions.

• The attacker can replay the same transaction multiple times.

• The attacker can increase the amount of the transaction.

All these threats motivate a customer to conduct business on well-established sites only.

Suppose that a customer wants to purchase a bike that is cheaper on a less established site.

 With the use of a crypto coprocessor, the hypothetical transaction described above

can be more secure. In this scenario, the cryptographic coprocessor resides on the server.

The cryptographic coprocessor protects the personal information and transaction data by

transmitting the data through a secure cryptographic channel to the customer’s system. All

sensitive personal-transaction data are encrypted when they are outside the server’s

domain. Neither an adversary nor an operator of the server can change the transaction

data, and the transaction can execute securely [72].

6. Cryptographic Algorithm Performance

 According to Schneier and Whiting, the principal criterion when designing or

selecting a cryptographic application should always be security [73]. However, in the real

world, high performance of the application is desirable. Therefore, the designer must

balance the tradeoffs of security, performance, and usability of a cryptographic

application [75]. Therefore, increasing a system’s security may require compromising its

usability and/or performance.

 Below we present performance figures of AES-128, SHA-1, and SHA-512 in

terms of speed, throughput, and power consumption from the literature. Our objective is

not to determine which cryptographic algorithm is most efficient; rather, we will use the

performance figures for making design decisions for our proposed 3DIC data-

transformation system. Moreover, according to Scheiner et al., “it is very difficult to

compare cipher designs for efficiency, and even more difficult to design ciphers that are

efficient across all platforms and all users” [73].

 102

a. SHA-1 and SHA-512 Performance

 We first present performance data on SHA-1 and SHA-512 from speed

benchmarks from the Crypto C++ library [74]. These speed benchmarks are based on

algorithms implemented in C++, compiled with Microsoft Visual C++ 2005 SP1 (whole

program optimization, optimized for speed), and executed on an Intel Core 2 1.83 GHz

processor running Windows Vista in 32-bit mode [74].

Algorithm MB/Second Cycles Per Byte

SHA-1 153 11.4
SHA-256 111 15.8
SHA-512 99 17.7

Table 7. Encryption rate in MB per sec and cycles per byte for SHA-1, SHA-256,
and SHA-512 (From [74]).

Figure 52. Encryption rate in MB per sec for SHA-1, SHA-256, and SHA-512 (From
[74]). SHA-1 has the largest encryption rate, followed by SHA-256 and SHA-512.

153

111
99

0

20

40

60

80

100

120

140

160

180

1 2 3 4

EN
CR

YP
TI

O
N

 R
AT

E
M

iB
/S

EC

SHA-1 SHA-256 SHA-512

 103

Figure 53. Number of cycles per byte for SHA-1, SHA-256, SHA-512 (From [74]).
SHA-1 has the smallest number of cycles, followed by SHA-256 and SHA-512.

 As explained above, SHA-1 generates a 160-bit message digest, and SHA-

512 generates a 512-bit digest. SHA-512’s longer hash value increases its resistance

against a brute-force attack, compared to SHA-1’s shorter hash value. However, SHA-1 is

faster than SHA-512.

 Next research compares the performance of different encryption

algorithms, including SHA-1 and SHA-512, implemented within the .NET framework

[75]. The .NET is an integral part of various applications running on Windows platforms

and provides common functionality for those applications. It consists of a library and

supports various programming languages The .NET framework's base-class library

provides various elements such as user interface, data access, database connectivity,

cryptography, web application development, and network communications [76].

Prior research measured the effect on the performance impact on MD5,

SHA-1, and SHA-512 of varying the data size from 4KB to 135KB and 1MB [75].

Specifically, Dhawan measured performance in terms of requests per second for different

user loads (different numbers of users) for different data sizes [75].

11.4

15.8
17.7

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

Cy
cl

es
 P

er
 B

yt
e

SHA-1 SHA-256 SHA-512

 104

Figure 54. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of 4

KB: requests per second (RPS) and response time. All three algorithms have nearly
the same performance, with SHA-512 being slightly slower.

 105

Figure 55. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of

135 KB: Requests per second (RPS) and response time. As the data size increases
to 135 KB, there are more variations in the speed. For five users, as SHA-512 is
almost 55% slower than SHA-1, and SHA-1 is almost 33% slower than MD5.

 106

Figure 56. Hash algorithms (From [75]). MD5, SHA-1, and SHA-512 for a data size
of 1MB: requests per second (RPS) and response time. As the data size increases to

1 MB, there are more variations in speed. For five users, SHA-1 is almost 72%
faster than SHA-512.

 These experiments show that larger message digests reduce the

performance of the hash algorithms. This is an example of a tradeoff between security and

performance.

 107

 Gladman explores the performance of a family of hash algorithms in terms

of cycles per byte on Intel and AMD systems for different data lengths, from 1 to

100,000 bytes [77].

Data Length 1 10 100 1,000 10,000 100,000
AMD64 (64 bit mode)

SHA1 672 70.1 13.07 9.79 9.4 9.7
SHA224 1436 145.3 27.9 21.1 20.4 20.4
SHA256 1483 149.9 28.4 21.1 20.4 20.4
SHA384 1864 187.9 19.9 13.9 13.5 13.4
SHA512 1939 195.6 20.6 14.0 13.5 13.4

Table 8. Cycles per byte for the family of SHA algorithms on an AMD 64 system
(From [77]).

Figure 57. Performance of the SHA family of algorithms on an AMD 64 system
(From [77]). For SHA-1, hashing one byte requires nearly 672 machine cycles,

while SHA-512 requires 1939 cycles. Thus, SHA-1 is faster than SHA-512.
Increasing the data length decreases the difference in speed, but SHA-1 is faster

than SHA-512 in all cases.

0

500

1000

1500

2000

2500

1 10 100 1000 10000 100000

M
ac

hi
ne

 C
yc

le
s

Data Length (bytes)

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

 108

Data Length 1 10 100 1,000 10,000 100,000
Intel P3

SHA1 1401 128.1 22.9 20.5 20.2 17.2
SHA224 2865 294.1 59.4 42.7 41.4 41.0
SHA256 2993 292.5 55.8 42.7 41.5 41.0
SHA384 23253 2380.1 241.9 177.9 174.5 173.1
SHA512 23653 2433.7 239.2 177.5 174.7 172.8

Table 9. Cycles per byte for the SHA family of algorithms on an Intel P3 system
(From [77]).

Figure 58. Speed of the SHA family of algorithms on an Intel P3 system (From [77]).

SHA-1 requires nearly 1401 machine cycles to hash one byte, while SHA-512
requires 23653 cycles. Thus, SHA-1 is faster than SHA-512. Increasing the data

length increases the difference in speed, but SHA-1 is faster compared to SHA-512
in all cases.

 These experiments demonstrate that SHA-1 is faster than SHA-512. However,

SHA-512 is much more resistant to brute-force attack, because it generates a 512-bit hash

value instead of a 128-bit hash value. This is an example of a tradeoff between security

and performance.

0

5000

10000

15000

20000

25000

1 10 100 1000 10000 100000

M
ac

hi
ne

 C
yc

le
s

Data Length (bytes)

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

 109

b. AES-128 Performance

 For AES-128, we present performance figures from previous research in

terms of speed, time, and energy consumption.

 We present speed data for AES (128,192,256) with electronic codebook

(ECB), cipher-block chaining (CBC), cipher feedback (CFB), output feedback (OFB), and

counter (CTR) modes from Crypto++ [74]. These figures reflect the performance of AES

implemented in C++, compiled with Microsoft Visual C++ 2005 SP1 and executed on a

1.83 GHz Intel Core 2 processor running Windows Vista in 32-bit mode [74]. Figures 59

and 60 show that AES-128 is faster than AES-192 and AES-256. Also, AES/CTR mode

(128-bit key) is the fastest configuration, with a encryption rate of 139 MB/sec. The

slowest configuration is AES/CBC (256-bit key) with an encryption rate of 80 MB/sec.

Algorithm MB/Second Cycles Per Byte

AES/CTR (128-bit key) 139 12.6
AES/CTR (192-bit key) 113 15.4
AES/CTR (256-bit key) 96 18.2
AES/CBC (128-bit key) 109 16.0
AES/CBC (192-bit key) 92 18.9
AES/CBC (256-bit key) 80 21.7
AES/OFB (128-bit key) 103 16.9
AES/CFB (128-bit key) 108 16.1
AES/ECB (128-bit key) 109 16.0

Table 10. Encryption rate in MB per sec and cycles per byte for AES-128, AES-192,
and AES-256 in conjunction with electronic codebook (ECB), cipher-block

chaining (CBC), cipher feedback (CFB), output feedback (OFB), and counter
(CTR) modes (From [74]).

 110

Figure 59. Number of cycles per byte for various combinations of AES key lengths
and block cipher modes (From [74]). AES-128 for every mode is faster than AES-
192 and AES-256. AES/CTR mode (128-bit key) is the fastest combination. All

other combinations have performances ranging from 15.4 to 18.9 cycles per byte.
The slowest combination is AES/CBC (256-bit key).

12.6

15.4

18.2

16

18.9

21.7

16.9
16.1 16

0

5

10

15

20

25

Cy
cl

es
 p

er
 B

yt
e

 111

Figure 60. Encryption rate in MB/sec for various combinations of AES key lengths

and block cipher modes (From [74]). AES-128 for every mode is faster than AES-
192 and AES-256. AES/CTR mode (128-bit key) is the fastest combination, with

an encryption rate of 139 MB/sec. The slowest combination is AES/CBC (256 – bit
key).

 Al Tamimi presents experimental results based on a C++ library

implementing some of the most commonly used cryptographic algorithms [78]. AES-128,

AES-192, and AES-256 were implemented in C++, compiled with Microsoft Visual C++

.NET 2003, and executed on a 2.1 GHz Pentium 4 processor running Windows XP SP 1.

139

113

96

109

92

80

103
108 109

0

20

40

60

80

100

120

140

160

TR
AN

SF
ER

 R
AT

E
M

B/
SE

C

 112

This experiment explored the speed of AES for a data length of 256 MB. Figures 61, 62,

and 63 show that AES-128 is faster than AES-192 and AES-256. Therefore, AES-256

sacrifices some performance for greater security.

Table 11. Performance of AES-128, AES-192, and AES-256 to process 256 MB of
data in terms of CPU time and the encryption rate in MB/sec (From

[78]).

Figure 61. Time required for AES-128, AES-192, and AES-256 to encrypt 256Mb of
data (From [78]). AES-128 requires the least time (4,196 sec) and AES-256

requires the most time (5,308).

4.196

4.817
5.308

0

1

2

3

4

5

6

AES-128 AES-192 AES-256

Ti
m

e
ta

ke
n(

se
c)

Algorithm Megabytes

Processed

Time Taken(sec) MB/sec

AES-128 256 4,196 61,010

AES-192 256 4,817 53,145

AES-256 256 5,308 48,229

 113

Figure 62. Encryption rate for AES-128, AES-192, and AES-256 to encrypt 256MB
of data (From [78]). AES-128 has the largest encryption rate (61.01 MB/sec), and

AES-256 has the smallest (48.229 MB/sec).

Figure 63. CPU time and encryption rate for AES-128, AES-192, and AES-256 to
encrypt 256MB of data (From [78]). AES-128 has the highest encryption rate and

the shortest time and is faster than AES-192 and AES-256.

61.01

53.145 48.229

0

10

20

30

40

50

60

70

AES-128 AES-192 AES-256

En
cr

yp
tio

n
Ra

te
 (M

B/
se

c)

4.196 4.817 5.308

61.01

53.145
48.229

0

10

20

30

40

50

60

70

AES-128 AES-192 AES-256

Encryption time and encryption rate

Time Taken

Transfer Rate MB/sec

 114

 In addition to speed, power is another important design constraint. For

example, battery life is important for embedded systems supporting cryptographic

applications. Cryptographic algorithms can be intense computations requiring substantial

power consumption. Below we present two studies on power consumption for

cryptographic applications, which show that the use of longer keys increases power

consumption.

 Hirani’s dissertation explores the power consumption of various

cryptographic algorithms, both symmetric and asymmetric, used by applications in

wireless networks [79]. Hirani presents experimental results for AES for different key

lengths (128, 192, and 256 bits). He first compares the changes in power consumption for

different AES key lengths. Figure 64 shows that as the key length increases, so does

power consumption. For AES-192, there is an increase of 8% in power consumption

compared to AES-128, while AES-256 experiences an increase of 16% compared to AES-

128. Therefore, increasing key length achieves greater security and resistance to attacks at

the expense of an increase in power consumption.

Algorithm Battery

consumption (%)

AES-128 0.0041

AES-192 0.0044

AES-256 0.0047

Table 12. Battery consumption for AES for different key lengths (From [79]).

 115

Figure 64. Battery consumption (%) for different AES key lengths (From [79]). AES-
128 has the smallest power consumption, while AES-256 consumes the most

power.

 Potlapally et al. analyze the energy consumption of security protocols [80].

Their analysis is based on performing secure data transactions within a battery-powered

system (Compaq iPAQ PDA). They perform measurements of the current drawn from the

battery and measure the power consumed during each cycle of the cryptographic

algorithm. They provide power consumption figures for AES-128, AES-192, and AES-

256 in conjunction with electronic codebook (ECB), cipher-block chaining (CBC), cipher

feedback (CFB), and output feedback (OFB). Their analysis also includes the key setup

phase. Their analysis shows that AES-128 has the lowest power consumption for the key

setup phase and for all block cipher mode configurations of AES. Also, CFB mode has

the highest energy consumption of any AES operating mode, while ECB is the most

economical in terms of energy consumption.

0.0041

0.0044

0.0047

0.0038

0.0039

0.004

0.0041

0.0042

0.0043

0.0044

0.0045

0.0046

0.0047

0.0048

AES-128 AES-192 AES-256

Ba
tt

er
y

co
ns

um
pt

io
n

(%
)

Key sizes in bits

 116

Key Size Key
setup(μJ)

ECB (μJ/B) CBC (μJ/B) CFB (μJ/B) OFB (μJ/B)

128 7,83 1,21 1,62 1,91 1,62
192 7,87 1,42 2,08 2,3 1,83
256 9,92 1,64 2,29 2,31 2,05

Table 13. Energy consumption of various combinations of AES block cipher modes
and key sizes, From [80].

Figure 65. Power consumption of AES-128, AES-192, and AES-256 in key setup

phase and in conjunction with electronic codebook (ECB), cipher-block chaining
(CBC), cipher feedback (CFB), and output feedback (OFB) modes (From [80]).
AES-128 has the lowest power consumption for the key setup phase and for all

block cipher modes. Also, CFB mode has the highest energy consumption of any
AES operation mode, while ECB has the lowest.

 In conclusion, the designer of a cryptographic application must balance

many performance constraints. For example, increasing the key length increases security,

but also increases power consumption and processing time, while decreasing the

encryption rate.

7.83

1.21 1.62 1.91 1.62

7.87

1.42
2.08 2.3 1.83

9.92

1.64
2.29 2.31

2.05

0

2

4

6

8

10

12

Key setup(μJ) ECB (μJ/B) CBC (μJ/B) CFB (μJ/B) OFB (μJ/B)

Po
w

er
 C

on
su

m
pt

io
n

AES-128 AES-192 AES-256

 117

V. 3D INTEGRATED CIRCUIT ARCHITECTURE

A. INTRODUCTION

 3D integration is an emerging integrated-circuit fabrication technology in which

two or more IC dies are vertically stacked and connected with conductive posts. This

allows a commodity die, or computation plane, to be combined with a custom die, or

control plane. We envision a two-die system consisting of a general-purpose CPU in the

computation plane and a data transformation coprocessor in the control plane.

 In one application of 3D integration, a profile of signals in the computation plane

is delivered at very high bandwidth to the control plane, where they can be compressed

using an efficient hardware compression circuit. Once the data is compressed, it can then

be sent off-chip for analysis over a lower bandwidth channel to a storage device. A major

advantage of a 3D approach is reduced delay and increased bandwidth between the

computation and compression functions, compared to a 2D implementation. This

advantage can be applied to dynamic program analysis for reverse engineering of

malicious software and post-mortem analysis of a system that has suffered an attack. The

amount of data collected depends on the granularity of the signals collection and the

speed of the system: collecting more signals results in a larger data stream. The high

bandwidth between layers possible with 3D integration has the potential to increase the

bandwidth to off-chip storage and to reduce the on-chip storage need.

 Crypto processors are widely used in a variety of critical systems that require

higher bandwidth encryption than that available with software encryption. They were

initially developed for military cipher machines but have spread to smart cards, banking,

telecommunications, networking, aerospace, and high-assurance computing platforms. A

crypto coprocessor is a custom circuit for carrying out cryptographic transformations,

often embedded in a tamper-resistant packaging. Systems will often combine a

cryptographic coprocessor with a general-purpose processor, key storage, and other

elements. A crypto coprocessor may implement just one algorithm or may support a

variety of ciphers, e.g., DES, RSA, SHA-1, etc. To achieve the highest possible

 118

performance requires careful balancing of tradeoffs between speed, cost, power, and

security during design and implementation.

B. FACTORS IN 3D ARCHITECTURE

 In this chapter, we present the main aspects that have to be considered when

designing a 3DIC that requires different thinking, methods, and tools than a 2DIC. These

factors include the bonding methods, the floor plan, power and ground networks, memory

placement, thermal issues, and testing methods. We conclude with a “straw man” design

for our own computation plane.

1. Bonding: Interconnection Methods

As discussed in Chapter II, in a three dimensional 3DIC, we have multiple layers

which are stacked together. Various interconnect technologies [6], [81] can be applied to

the 3D integration such as wire bonding, microbumps, through-silicon vias (TSVs), die-

to-die, or contactless interconnection.

A common approach is wire bonding [81], where wires connect each die in a stack

within a processor package. In this process, wires emerge from the I/O contacts on

periphery of each die but are contained within the package. This approach is limited by

the resolution of wire bonders and becomes more complicated as the number of I/O

contacts in the chips increase. Wire bonding is not considered a true 3D technology

because it does not provide the spatial locality advantages of TSVs, due to the fact that

signals passing between layers must travel to and from the peripheries of their respective

dies.

Another interesting approach is microbump technology [81]. This process uses

either solder or gold bumps, placed on the surface of the die, to provide the required

connections. The pitch of these bumps varies from 50 to 500 μm, although in some cases

smaller sizes are possible. The mechanical stresses applied during the assembly process

are significantly lower than wire bonding. Since the bumps only require the top one or

two metal layers, the remaining layers are available for routing and devices. This specific

3D-packaging approach provides an enhanced vertical interconnect density compared to

the wire-bonding approach. On the other hand, it does not reduce in a significant way the

 119

parasitic capacitance, because as, is stated by Davis et al., “a microbump bonded cube

must still route signals to the periphery before sending them back to the destination inside

the cube” [81]. This 3D packaging method enables one or more chips, fabricated under

diverse technologies, to be joined into a single unified stack.

According to Davis et al., through-silicon via interconnection offers the greatest

interconnect density, but this comes at a higher cost [81]. TSVs (through silicon vias)

enable the highest vertical interconnect density. TSVs are short vertical wires used to

connect planar wires. In face-to-face bonding, one layer is placed face down onto the

second wafer, which is facing up. Alternatively, layers can be stacked face to back, but

this requires TSVs to pass through the bulk silicon. Note that face-to-face bonding only

allows a maximum of two layers in the stack; face-to-back bonding is required for more

than two layers. Face-to-face vias are smaller than the TSVs used in the face-to-back

bonding process; however, TSVs are still required to support I/O through the top layer.

The maximum number of layers that can be stacked in a face-to-back configuration is an

open research question. Needless to say, more layers in the stack present greater

challenges and higher costs. Note also that dies can be bonded in a wafer-to-wafer, die-to-

die, and die-to-wafer fashion. Furthermore, TSVs can be manufactured using a via-first

approach, where the vias are made prior to making the devices and the wires; or via-last,

where the vias are added after the devices and wires are made. Via-first is more expensive

than via-last but allows smaller via sizes.

The process of making via-last involves drilling holes from the upper wafer to the

lower and then filling the holes with tungsten to provide connectivity. As described by

Loh et al., current fabrication technologies are capable of providing die-to-die via pitches

within a range of 10 μm x 10 μm to 1 μm x 1 μm [6]. Figure 66 depicts a cross-sectional

view of the die-to-die interface. The die-to-die vias [17] are placed on the top of the metal

stack of each die and are bonded after alignment. They are differentiated from I/O pads,

and their size and electrical characteristics are similar to vias used to connect on-die metal

routing layers. Last year, IBM managed to reduce the via pitch to 0.2 μm x 0.2 μm

through silicon-on-insulator (SOI) technology [82]. With this technology, as described by

 120

Davis et al., we can “avoid the need for passivating the hole by polishing the substrate

away completely, down to the buried oxide” [81].

Figure 66. Cross-sectional view of the die-to-die interface for face-to-face and face-
to-back bonding arrangements (From [6]). According to the position of the metal
layers of the upper die relative to those of the lower die, the bonding process is

either face-to-face, where the metal layers of the two die face each other, or face-
to-back, where the metal layers of the lower tie touch the bulk silicon of the upper

die [6].

Another method of connecting 3DIC layers is contactless interconnection, which

involves the use of capacitive or inductive coupling for the communication between

layers [81]. As described by Davis et al., “this approach eliminates the processing steps

for creating inter-layer DC connectivity and eliminates the need to route signals to the

periphery, allowing for reduced wire lengths” [81]. Also, due to the fact that the

contactless approach requires only a minimum amount of processing for chip thinning,

which consequently minimizes the complexity of fabrication process, the manufacturing

cost is significantly less as compared to the manufacturing cost of approaches that use

microbumps and through-silicon vias.

Figure 67 illustrates the interconnect technologies described above.

Face-to-face bonding Face-to-back bonding

At device layer, d2d size is small to
minimize impact layout

At bonding interface, d2d size must
be large enough for proper
alignment

 121

Figure 67. Illustration of Vertical Interconnect Technologies (From [81]). Wire
bonding (top left): wires connect each die in a stack. Micro bumps (top middle and

top right): solder or gold bumps, placed on the surface of the die provide the
required connections. Contactless (middle row): involves the use of capacitive
(middle left) or inductive (middle right) coupling for communication between
layers, Through-silicon via (TSVs) (bottom row): Short vertical wires between

layers of interconnect, used to connect the planar wires. Their size varies from 50
μm to 1μm. With the implementation of silicon-on-insulator (SOI) technology

(bottom right), the pitch of vias reduced to 0.2 μm x 0.2 μm.

Illustration of Vertical Interconnection Technologies

Wire-bonded Micro-Bump --
3D Package

Micro-Bump --
Face-to-Face --

Contactless: Capacitive with buried bumps Contactless -- Inductive

Through-Via -- Bulk Through-Via -- SOI

 122

2. Manufacturing Methods

 There are two primary methods of manufacturing three-dimensional (3D) chips

with respect to wafer level stacking: the “bottom-up” and the “top-down” fabrication

methods [83], [85].

The bottom-up wafer-fabrication method [84], [85] builds a multi-die processor in

a manner similar to how multistory buildings are constructed. Each die has several

internal layers for devices, interconnects insulation etc. For 3DICs built using the bottom-

up method, the first die is constructed and each of the layers is laid down. Next, the

second die is constructed, along with its layer, and so on. According to Euronymous, a

significant drawback of this method is that it is difficult to make changes to the design of

one of the die without affecting the entire stack [84]. However, a significant advantage of

this method is that the size of the inter-layer vias can be reduced because the size of the

transistor devices is reduced.

With the top-down wafer fabrication method [84], [85], each die is manufactured

separately, and all the manufactured dies are bonded together at the final stage. This

method has significant advantages. First, the certification and testing process is more

accurate, due to the fact that each die can be tested independently. Thus, the final step

bonds layers that have already been tested and certified. Another advantage is that this

method allows diverse layers, manufactured using heterogeneous processes and optimized

to a specific purpose, to be joined into a single unified stack. For example, one layer could

be optimized for computation and another for sensing light. However, a disadvantage of

the top-down method is that the size of the inter-layer vias cannot scale with the transistor

devices. Nevertheless, this fabrication method is less costly, due to the fact that it is easier

to make changes to an individual die without affecting the rest of the stack.

The top-down method encompasses the face-to-face and the face-to-back methods.

In the face-to-face method [84], the metal layers of each die are stacked facing each other,

and their interconnect layers are connected using die-to-die vias. On the other hand, in the

face-to-back method [84], all layers in the stack have the same orientation. The distance

between layers is larger, and the TSVs are longer and thicker than die-to-die vias used in

face-to-back bonding, as they must pass through bulk silicon to reach the metal layers of

 123

the next die. Face-to-back topology provides better scalability and can be adopted for

architectures requiring more than two layers. In our proposed architecture, we have

selected the face-to-face bonding process because we require only two layers.

a. Face-to-Face Bonding

 As it described by Loh et al. and depicted in Figure 68, the fabrication

steps for a face-to-face, top-down construction are as follows [6]:

1. We have the two processed wafers.

2. Copper via stubs are connected to the top level metal areas of the dies.

3. After the face-to-face alignment of the two wafers, they are joined using

thermo compression. The total area between two dies will be completely

populated by die-to-die vias. These vias serve the following needs: they

provide a path for I/O signals, power, and ground, they are good

conductors for dissipating heat in the 3DIC, and they support the

mechanical connection of the two dies.

4. With the use of chemical–mechanical polishing (CMP), one layer of the

stack is thinned from 10 to 20 μm.

5. The thinning process allows the through-silicon vias (TSVs), which

provide the external I/O signal, power, and ground connections, to be

relatively short.

Figure 68. Fabrication steps for face-to-face bonding (From [6]).

 124

b. Face-to-Back Bonding

 As described in [6] and depicted in Figure 69, the fabrication steps for a

face-to back, top-down construction are as follows:

1. We have the two processed wafers. Before thinning the wafer, it must be

attached to a handle wafer.

2. With the use of chemical–mechanical polishing (CMP), the wafer is

thinned to about 10 to 20 μm. The handle wafer provides mechanical

support to the thinned wafer and prevents it from being broken.

3. The two halves of the die-to-die (d2d) vias are joined. The process of

constructing the via stubs, with respect to the face wafer, is similar to the

face-to-face process. With respect to the back wafer, the vias are etched in

a way similar to the face-to-face vias, which provide signal, power, and

ground.

4. The two dies are bonded together by thermo compression.

5. The thinned die is released from the handle wafer.

Figure 69. Fabrication steps for face to back bonding (From [6]).

C. FLOORPLAN, POWER, AND GROUND NETWORK

 For 3DIC floor planning and power placement, several parameters have to be

considered, the principal being thermal dissipation. Several tools for modeling placement

 125

that consider thermal effects have been developed, such as a tool developed by Cong et al.

in 2004, which is a thermal-driven floor-planning algorithm for 3D ICs [85].

 Gabriel H. Loh et al. developed a floor planner that “takes a micro-architectural

net list and determines the placement of the functional modules while simultaneously

optimizing for performance and thermal reliability. The traditional design objectives such

as area and wire length are also considered” [86].

 A proposal focusing on power/ground distribution and the IR drop effect (a

voltage drop due to the resistance of the mesh) is presented by Falkenstern et al. [87]

They use a B*-tree for floorplan representation; to represent the power and ground, they

use a resistive mesh and a simulated annealing engine at the end. They form some

interesting conclusions; for example, the average IR drops generally decrease if the

designers increase the number of layers in the 3DIC, thus reducing the area in each layer.

Because the modules are closer, taking advantage of the small horizontal distance

provided by the stacking process, the power/ground edges are shorter, resulting in small

IR drops. Also 3DIC allows a better distribution of modules, thus reducing the number of

modules consuming energy from the same edge, allowing each edge to have less current,

therefore reducing the IR drop. Those points are important because smaller IR drops

increase the performance of the circuit [87].

 Gabriel H Loh et al. present some conclusions based on simulations [6]. In their

calculations, about 30% of the die-to-die vias are used for power and ground. For face-to-

back topologies, normal pins can be used for supplying off-chip power, but when face-to-

face topologies are used, the power supply from the board to the chip must be delivered

using TSVs. This does not present serious concerns, “because the inductance of a single

10-mm-wide TSV is less than 2.5 pH for a single return path. Many return paths exist in a

full chip, which further reduces the effective inductance. This additional inductance has

little effect compared to the switching noise observed in the on-die power distribution

networks of existing processors” [6].

 Suppose we have a 3DIC with half the footprint of a 2DIC. The 3D chip will

probably use half the pins to transport power, compared to the 2D chip, doubling the

current on those pins. Even if the 3D chip had the same number of pins, the designer

 126

probably would have to double the current to support two layers of circuit. Loh et al.

present conclusions based on simulation about the number of pins and power distribution

that illustrate these concepts [6]. First, they conclude that the TSV can easily support the

current increase and explain that a 3D IC does not consume the same amount of power as

a 2D IC. Thus, having half the number of pins does not double the current density in each

pin, because a 3D IC can reduce the power requirements due to shorter distances between

on-chip modules [6].

D. MEMORY

Memory implementation is a significant design issue and an important design

decision in our 3DIC architecture. Many memory issues have been explored in the recent

literature. Although we are not proposing to stack memory in our 3D architecture, we

want to consider this issue for future analysis and improvements to our design that will

provide the benefits of an on-chip cache. These issues include limits on the pins on both

ends of the memory controller and the DRAM modules, as well as motherboard area

requirements [92]. One option that was studied was to implement a method of direct

vertical stacking of many dies of memory, one above another, all connected through TSVs

[88], [89]. In this process, all memory dies would be constructed separately, utilizing

either 2D SRAM or DRAM. This method offers simplicity, and only minor changes are

required during the manufacturing process, because it is done in sequential steps. The gain

in performance is due to the fact that on-chip buses are faster, consume less power, and

are less capacitive [92]. IBM estimates that a 60% latency reduction is possible by using

an on-chip DRAM [91]. Results of simulations, using Simple Scalar 4.0 in comparison

with a baseline 2DIC with a 3GHz CPU, 750 MHz memory, 1MB L2 cache, and 8MB L3

cache, show an average speed up of 126% over 2D implementation for floating-point

programs and a 59% speedup for integer programs.

Loh et al. [92] say that the above implementation does not receive a large

performance benefit, due to the small size of the workload; therefore, they also propose

implementing a 64-byte bus to memory, which, by itself, increases the performance to

71.8% over the 2DIC.

 127

An observation may be made about DRAM in 3D architecture [93] during the

refresh operation. Due to the greater operational temperature of a 3DIC, it is reasonable to

estimate that the refresh rate needed to retain data will also increase, and a proposed

solution is the use of smart refresh, which uses a counter to refresh the required memory

rows and banks only, saving a geometric mean of 6.87% of total energy.

Another interesting approach is that of Sun et al., who explore the adoption of a

coarse-grained 3D partitioning method focused on 3D DRAM design. The main purpose

of the above method [90] is to share the global routing of the memory address and data

bus between all DRAM dies. To achieve this, they used coarse-grained TSVs with a pitch

in the tenths of μms. In this method, a partition of individual memory subarrays is created

and, once they are split, distributed to all available dies. Each bank of memory is divided

into sub-banks, where each sub-bank is divided into 3D subarray sets, where each one

contains n 2D subarrays, including the required memory calls and the peripheral circuits.

Using the above method in each 3D subarray set, the required 2D subarrays share only

address and data I/O TSVs. Therefore, the total number of TSVs is reduced, and the

global addresses can be distributed across the total number of dies, achieving the optimum

result.

Loh et al. explore another similar approach focused on implementing a large L2

cache memory. They adopted a coarse-grained method to place a cache above one or

more processor cores [6]. By placing cache memory on top, they reduced the number of

TSVs or face-to-face vias. An enhancement uses a banked implementation, in which each

bank can be the same as it is in a conventional 2DIC, but in the case of a 3DIC, each bank

is stacked on top of another. The main advantage of this method is that the global routing

can be reduced significantly. The two implementations described above are shown in

Figure 70.

 128

Figure 70. Implementing a cache in 3D (From [6]). (a) A baseline 2D processor with
L2 cache; (b) an L2 cache stacked above the cores; (c) L2 cache banks stacked on
each other. In Figure (1)(c), each bank can be the same as it is in a conventional
2DIC, but in the case of a 3DIC, the banks are stacked. The advantage is that the

global routing can be reduced significantly. The bold black arrow in each subfigure
illustrates the reduction in interconnection length.

Loh et al. propose other approaches geared towards a more aggressive 3D memory

organization that are beyond the scope of this thesis [92].

E. THERMAL

 Many advantages of 3DICs arise from the reduction in overall wire length.

Unfortunately, this does not come free.

 According to Puttaswamy et al., temperatures on 3DICs are higher than

conventional 2DICs for three reasons [94]. First, the 3DICs suffer from a higher power

density because the active devices are stacked vertically. Second, heat dissipation is less

effective in 3DICs, because the temperature gradients are lower. Also, the physical path

used for dissipation becomes significantly longer along the vertical dimension towards the

heat sink. Finally, the area of the die in contact with the heat spreader is not large enough

because the effective area (footprint) of each die is minimized. This leads to less efficient

dissipation to the heat sink. Various techniques have been developed to address thermal

issues in 3DICs. By selecting an optimal topology, it is possible to achieve a thermal

profile similar to that of a conventional 2DIC. For example, memory can be stacked

above the processor core [17]. This significantly reduces the number of main memory

accesses and corresponding bus activity, which leads to a reduction in power

consumption, and a decrease in the thermal impact. Black et al. investigate three options

for 3D memory stacking on a base processor die (Intel Core TM 2 Duo microprocessor),

 129

in which cores have private, level-one instruction and data caches of 32KB and share a

4MB level-two cache (L2). The first option is to increase the L2 size from 8MB to 12MB

of static random-access memory (SRAM). This implementation places the additional

8MB L2 cache on top of the base processor die. The second option is to replace the L2

SRAM with a larger L2 dynamic, random-access memory (DRAM), thus replacing the

4MB L2 cache with a 32MB stacked L2 DRAM. The third option stacks a 64MB DRAM

on top of the base processor. All the above options illustrated in Figure 71.

Figure 71. Memory-stacking options (After [17]): (a) 4MB baseline; (b) 8MB
stacked, for a total of 12MB, with an increase of the L2 size from 8MB to 12MB of

static random-access memory (SRAM); (c) 32MB of stacked DRAM with no
SRAM, replacing the L2 SRAM with a larger L2 dynamic random-access memory

(DRAM), thus replacing the 4MB L2 with a 32MB stacked L2 DRAM; and (d)
stacking a 64MB DRAM on top of the base processor.

Thermal analysis of the proposed options demonstrates that the thermal impact due to

stacking memory is insignificant compared with its performance and power advantages,

as shown in Figure 72.

Cache
4MB

Core
#1

Core
#2

Cache
4MB

Core
#1

Core
#2

Cache
4MB

Core
#1

Core
#2

Cache 8MB
SRAM

Cache 64MB
DRAM

Core
#1

Core
#2

Cache
64MB
DRAM

 130

Figure 72. Temperature results for the stacked 12MB, 32MB, and 64MB memory
options compared to the baseline 4MB (After [17]). The thermal impact of stacking

memory is slightly greater than 2DICs.

 Bryan Black at al. analyze and compare the power, frequency, thermal, and

performance factors of a 2D architecture [17]. They try different combinations and

conclude that:

• By limiting the temperature to that of a 2D architecture, a 3DIC can achieve an

8% increase in performance with 34% reduction in power consumption, due to

distance and latency optimization.

• By limiting the performance to that of a 2D architecture, a 3DIC achieves a

reduction in power consumption of 34%.

• By limiting the frequency to that of a 2D architecture, a 3DIC realizes an increase

in the temperature of 14oC and a performance increase of 15%.

Frequency and temperature play an important role in any 3D architecture. Most

solutions for thermal issues utilize careful floor planning and a small reduction in

processor speed, which does not reduce the overall advantage of a 3D architecture, as

described by Loh et al.

86

87

88

89

90

91

92

93

2D 4MB 3D 12MB 3D 32MB 3D 64MB

Pe
ak

 T
em

pe
ra

tu
re

 (C
)

2D and 3D memory stacking options

 131

“It is found that, in spite of the lower operating frequency of a 3D chip (as imposed by

thermal concerns), the overall system performance can still be significantly better than

conventional planar designs, especially for memory intensive applications” [101].

The approach of Cong and Zhang is to increase the thermal conductivity of the

stack by inserting thermal vias [95]. According to Sapatnekar, “the temperature may also

be reduced by improving the effective thermal conductivity of paths from the devices to

the heat sink. An effective method for achieving this is through the insertion of thermal

vias: thermal vias are structurally similar to electrical vias, but serve no electrical purpose.

Their primary function is to conduct heat through the 3D structure and convey it to the

heat sink” [96]. However, according to Hua et al., implementations using thermal vias do

not consider the fact that they can increase routing congestion, which consequently leads

to the use of longer interconnects and thus to a significant increase in dynamic power

[97]. The increase in dynamic power can result in higher temperatures and power leakage.

In [97], Hua et al. explore the mapping between dynamic power and leakage power in two

designs, by altering the number of layers and related number of thermal vias. They used

two case studies involving low-power and high-performance applications and evaluated

the tradeoff described above. Their research concluded that the overuse of thermal vias

does not significantly affect the 3DIC system performance from the increase in wire

length. In the case of low-power applications, the thermal effect is not significant. In the

case of high-performance applications, adopting a specific process of placement of

thermal vias, it is possible to significantly reduce the thermal effects.

Some other interesting approaches to dealing with thermal issues involve the

rearranging of heat sources [96]. The locations of the heat sources can be moved through

careful placement of components. Floor planning is one of these techniques. Hang et al.

explore a floor-planning algorithm that reduces the peak temperatures of a 3DIC [99].

This algorithm is divided into two stages. First, it determines an optimum partitioning of

the functional blocks into layers, decreasing the total wire length. Next, it reconfigures the

floor plan of the layers that did not fully compact during the first stage.

Another interesting research is the floor-planning algorithm of Li et al, which

determines the optimum floor plan and placement of thermal vias. Their process is

 132

performed in two steps. First, all blocks are distributed to layers, and then the number of

vertical thermal vias required for each layer is determined. Second, the floor-planning

process is performed to determine the optimum floor plan for each layer and the number

of horizontal thermal vias required on each layer. Their method achieves a reduction in

thermal vias of 15% and increases the usable area and wire length.

 Adopting all the countermeasures against thermal effects described above, we can

maintain the advantage of 3DICs. Puttaswamy and Loh studied the thermal behavior of a

high-performance microprocessor built with two die and four die in a 3D technology and

showed that the temperature increases are not as much as was previously thought.

Techniques such as via layers, copper metallization, and modern packaging materials

increase efficiency. Finally, 3D implementations of one conventional processor have

thermal profiles similar to the 2D implementation. Figures 73, 74, 75 illustrate these

findings.

Figure 73. Thermal Profile of the Planar Processor (From [94]).

 133

Figure 74. Thermal Profile of the Two-Die, 3D Processor (From [94]).

Figure 75. Thermal Profile of the four-die, 3D Processor (From [94]).

F. TEST

 According to Xie, “One of the potential obstacles to 3D-technology adoption is the

insufficient understanding of 3D testing issues and the lack of DFT solutions”[15]. This is

due to the fact that in 3D technology, the test probing needles from the probing cards

cannot access inside the wafers. Other challenges include thermal issues, alignment,

bonding, and thinning. Figure 76 illustrates testing challenges in 3DIC design and the

status of several 3DIC research challenges.

 134

Figure 76. A) The role of 3DIC testing in the development process. B) status of 3DIC
research (From [102]).

 Lee and Chakrabarty describe problems in face-to-face bonding: “The bottom die

has up to hundreds of thousands of copper pads, but their small size and large number

make probing of signals difficult. The top wafer would be hard to be probed from the

copper side, the TSVs are buried and C4 bump pads are not fabricated prior to bonding”

[102]. With face-to-back bonding, “the top die is more testable than the bottom because

the C4 bump pads can be fabricated on the top layer. However, the top wafer must be

thinned, which introduces the problems of ultrathin wafer processing and limits the ease

with which the wafer can be probed. Typically, the probe card applies weight in the range

from 3 to 10 g per probe. Therefore, the probe weight per wafer can be as high as 60 to

120 kg, which is a serious issue for thinned wafers” [102]. To solve these issues, research

is underway using techniques described by Lee and Chakrabarty, such as “contactless

testing and proximity I/O based on near-field wireless communication, inductive

coupling, and capacitative coupling” [102].

 135

 Another significant factor in a 3D architecture is the cost and time to manufacture.

Testing directly impacts in the total cost and time, as described by Grochowski et al.:

“Integrated circuit (IC) testing for quality assurance is approaching 50% of the

manufacturing costs for some complex mixed-signal IC’s” [103]. The techniques

developed for 2D testing to reduce time and cost cannot be made efficient for 3D

manufacturing, as described by Lee and Chakrabarty: “Modular testing, which is based on

test access mechanisms (TAMs) and IEEE Std 1500 core test wrappers, provides a low-

cost solution to the test access problem for a System on Chip (SoC); many I/O and scan

terminals for the embedded cores can be accessed from a few chip pins. For today’s 2D

ICs, several optimization techniques have been reported in the literature for test

infrastructure design to minimize test time. Similar techniques are needed for 3D ICs, but

we are now confronted with an even more difficult test access problem: the embedded

cores in a 3D IC might be on different layers, and even the same embedded core could

have blocks placed on different layers. Only a limited number of TSVs can be reserved

for use by the TAM. Although many TSVs can be integrated in a 3D IC, most are

required for power, clock, and signal lines, and the need for a ‘’keep out’ area requires

optimization techniques that make judicious use of TSVs for test access. Wrapper design

and optimization must also go beyond IEEE 1500 and consider how a core on multiple

layers can be wrapped under TSV constraints” [102].

 To address the testing problem, we adopt the solutions presented by Wu et al.,

using scan chains in two implementations to test the 3D-IC [104]. As scan chains can

present challenges due to the time spent on testing, the length of the wires, and the area,

most implementations divide the chip into smaller areas to be tested, reducing the testing

costs.

 The first technique applies a genetic algorithm (GA) to determine a best-path

chain to map all the test points based on constraints, such as number of TSV, wire length,

and scan time. The use of a GA, together with simulated annealing (SA), is the best tool

to optimize multi-objective goals, with the advantage that a GA takes into account a pool

of solutions to avoid local minima, as compared to just one solution computed by SA.

This implementation uses three approaches, each with its advantages and disadvantages.

 136

Approach one, Figure 77: each layer is considered an independent 2DIC, and

using a 2D scan-chain tool, the chains are designed layer by layer, with a TSV at the end

of one layer’s chain linking to the beginning of the next layer’s chain.

Advantage: use of a simple 2D chain tool to design the scan chains. The number of

TSV is minimal (n-1 TSV for n layers).

Disadvantage: this method is optimal for each layer, but combining can lead to a

suboptimal global design.

Figure 77. Approach One (From [104]). Two independent scan chains tied together by
only one TSV.

Approach two, Figure 78: The cells to be scanned in all layers are projected onto

just one plane, and a simple 2D chain tool is used to design the global scan chain. This

approach does not take into account whether the cells are in different planes and will

require TSVs, which can be a good design choice if the distance between layers is

negligible.

Advantage: use of a simple 2D chain tool to design the scan chains.

Disadvantage: Since the TSVs are not considered, it can result in too many TSVs.

 137

Figure 78. Approach Two (From [104]). All testing points are projected onto just one
layer, and a 2D chain tool computes the scan-chain path.

Approach three, Figure 79: This approach computes the small global chain

considering vertical and horizontal distances. The algorithm considers the horizontal

Manhattan distance and the vertical distances.

Advantage: This is a true 3D scan chain that accounts for a globally optimal chain.

Disadvantage: The 2D chain tool has to be modified in order to address the 3D

chain.

Figure 79. Approach Three (From [104]). This is a true 3D approach in which the tool
computes the optimal path, considering horizontal and vertical distances.

 The importance of these three approaches is that one of them is used as a

prioritizing method (constraint) in the genetic algorithm for computing the scan chain,

which determines the best scan chain design for testing.

 138

 GAs consist of five stages: (1) formation of the original population, a random list

of “chromosomes” (characteristics of this population); (2) execution of several rounds

until a condition is achieved; the rounds use a fitness function (a function applied over the

chromosomes in order to calculate some specific requirement); (3) reproduction, which

selects the new population based on some criteria over the result of the fitness function;

(4) a crossover step in order to exchange characteristics of different chromosomes; and (5)

mutation, which generates the new population for the next round.

 The GA presented by Wu et al. uses integers from 1 to N to represent all the flip-

flop cells to be tested, and the solution is a list of cells in the order visited, such that each

node is visited just once [104]. This list is called the chromosome of the GA. The fitness

function is calculated in order to determine the lowest wire length of the scan chain, so

that after the reproduction phase, the best chromosomes are the ones with the lowest scan-

chain wire length. In the crossover process, sections of each winning chromosome are

exchanged to generate new chromosomes; if during this insertion a node appears twice, it

is deleted from the original chromosome, the mutation takes place, and a second round

begins.

 The second proposed test technique uses integer linear programming (ILP), which

is a minimization of an objective linear function under a linear constraint—in this case,

minimizing the wire length of a scan chain, given the number of TSV as a constraint.

 We will not present all the mathematical implementation of this technique, which

is described by Wu et al. [104]; however, we will introduce the basic concept of the

model evaluated using Xpress-MP, a commercial ILP solver.

 In order to use this tool we first must specify the model and insert its parameters.

The basic model of this scan chain ILP is shown below; the step that follows this

specification is the definition of this model in Xpress-MP tool language. We assume that

this model has a unique path starting on node u, traveling N nodes passing through nodes

i,j, and ending in the v node; it also is constrained in the number of TSV, which has to be

lower than L, as shown in Figure 80.

ILP Description, Figure 80:

 139

1. For every cell I, there is only one immediate successor per scan cell, so the

path xij is equal to 1;

2. For every cell j, there is only one immediate predecessor per scan cell, so

the path xij is equal to 1;

3. There is no immediate predecessor for the initial scan pin u;

4. There is no immediate successor for the final scan pin v;

5. A scan cell cannot connect to itself.

6. L is a constraint on the number of TSV; each step between layers is

considered equal to one (L2 - L1 = l = 1).

7. If the function is nonlinear, it is replaced by a new binary variable to

ensure proper linearization.

8. Cell i is either before cell j or after cell j in the chain.

9–10. The initial node u is before every other node, and the end node v is after

every other node in the scan-chain.

Figure 80. A visual representation of the ILP specification inserted to Xpress-MP.

 The results from a comparison between the GA and ILP methods [104]

demonstrated a small reduction in wire length using ILP, so we recommend that approach.

Until no better tool is developed, the ILP method can be used for scan chain design with

“near-optimal solutions” [104].

 Our proposed architecture uses face-to-face bonding, which has testing and

accessibility advantages as described by Emma and Kursun [105]. Their method uses scan

chains in each layer that are accessible in a boundary scan. Their method also employs an

additional infrastructure that allows a total 3D test chain.

u

v

i
j l = 1

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

VI. THE IDEAL 3D SYSTEM

A. INTRODUCTION

 The main advantage of having a fully functional computational plane and a control

plane is that the computational plane can be manufactured in an untrusted foundry, and

security-critical functions can be implemented in a separate die that is fabricated in a

trusted foundry. The two dies can then be joined in a trusted facility. This allows dual use

of the commodity-computation plane, which provides economic benefits. However, it

requires some small changes to the computational plane.

 For example, the computational plane has to provide clock signals to the control

plane for synchronization, and this requires the availability of die-to-die connections. The

extra cost of modifying the computational plane is amortized across all custom, 3D

designs using that plane [4].

 Now that we have presented some architectural issues, we define our proposed

architecture in more detail. Our approach requires some changes in the computational

plane, such as:

• Vertical clock-signal delivery to the control plane and clock buffers to

synchronization

• Vertical connections for data transfer, from computational-plane registers to

control-plane compression buffers

• Vertical posts for control/query signals among computational and control planes

 Our proposed architecture does not require a memory connection; the compression

and crypto devices have their own memories.

 We propose a two-layer IC, with a computational plane and a compression-

encryption plane stacked in a face-to-face architecture (providing the smallest possible

distance between the layers [106]), allowing information to flow from the computational

plane to the compression-encryption plane (control plane) as fast as possible, and with the

die-to-die communication achieved using micro bumps that provide an enhanced vertical-

interconnection density and smaller distance, as compared to the wire-bonded method

[106].

 142

Figure 81. The proposed architecture consists mainly of a two-layer IC, with
computational and compression-encryption planes stacked face to face (allowing
the smallest possible distance between the layers), allowing information to flow

from the computational to the compression-encryption plane (control plane) as fast
as possible. Die-to-die communication is achieved using micro bumps that provide
an enhanced vertical interconnection density and smaller distance, as compared to

the wire-bonded method.

 We first place the compression coprocessor and then the crypto coprocessor in

order to ensure the highest ratio for the compression process. According to Intel, if

compression is done after the encryption of data, the ratio of compression will be poor,

due to the strong stochastic properties of the encrypted data [107]. Also, by compressing

data first, we can assist the encryption by significantly reducing the size of the data to be

encrypted. Moreover, compression increases data entropy and enhances the efficiency of

encryption. Finally, it provides another layer of security to the whole structure [107].

Control Plane

Computational Plane

 143

Figure 82. First, the compression coprocessor is placed in the control plane, followed
by the cryptographic coprocessor.

 We recommend that the control plane use the I/O capability of the computational

plane rather than implement its own separate capability. Die-to-die connections will

enable this sharing.

B. OPTIONS FOR STRAWMAN-DESIGN COMPUTATIONAL PLANE

 Our proposed computational plane architecture has two goals.

• Performance: comparable to other processors in the marketplace

• Traces: allow a control plane to access the information needed to generate a

specific set of traces to be compressed and encrypted.

1. Performance

 The computational plane of our proposed design has to be comparable to the most

advanced processors offered in the market. For comparison, Intel is offering the i7-

3930K, a processor with six cores that handles twelves threads simultaneously, running at

3.3 GHz, with a 12 MB cache and a 64-bit instruction set, in a 32 nm lithography. The

memory is accessed using four memory channels, at a rate of 21 GB/s. The temperature of

the case is about 162.7 oF (72.6 oC), and the package measures 58.5 x 51 mm [108].

Computational Plane

Control Plane
Compression
co processor

Cryptographic
co processor

 144

2. Traces

 Our design is also influenced by the traces we want to generate. It is impossible to

track all registers in a processor, especially in hyper-threading processors where threads

run in parallel, due to the giant amount of information that is processed per unit of time.

We have to decide carefully what has to be monitored, e.g., by choosing registers

carefully.

 As an example of the complexity involved, consider memory buses. We can

access all data being stored or retrieved, but data by itself has no meaning without the

instructions being executed, as described in Chapter III, Trace Compression. Along with

the “where to collect the traces” the other question is “when to collect it.” The basic

fetch–decode–execute cycle has, for example, twenty-four stages in the Pentium IV [108]

including, for instance, stages that determine the length of the instruction.

 Mysore et al. propose a 3D hardware approach to dynamic program analysis: “In

order to ensure that the profiling hardware will be flexible enough to perform a wide

variety of analysis methods, we need to capture many different signals” like memory

addresses (64 bits), memory values (64 bits), program counter (64 bits), opcodes, register

names, register values, cache miss, branch miss, and TLB miss. This set of signals gives

an estimate of the number of inter-die vias or “direct wires that need to be accommodated

for all relevant information to be passed on to an analysis engine.” Based on the

requirements given, they estimate that 1024 bits of profile data will be generated each

cycle, which will in turn require 1024 inter-die connections.” [109]

 One obvious place to monitor is the control unit, collecting information from the

program counter register, which holds the next instruction address, the status register that

contains information such as overflows, and the instruction register that holds the next

instruction to be executed. The control unit controls cores and threads using control

signals. Those signals can be collected to keep track of what each core is executing. Four

cores can be identified by two bits each. Data addresses are also important information

that can be combined with PCs for debugging and behavior analysis.

 With Intel’s hyper threading, each core executes two threads [110], so adding one

extra bit can identify the two threads in each core, resulting in three identification bits that

 145

help keep track of what core and thread is accessing the referenced data during a given

clock cycle, making it possible to closely inspect each process.

 In Chapter III, 2D Compression Hardware, we described traces consisting of

program counters, branch target addresses, exception-handler target address, and data

address. In general, program counters and data addresses are present in all traces that deal

with program debugging and behavior analyses; therefore, program counter (PC), data

address, and the special core/thread identification (CTID) are a good set of fields to

consider, resulting in a 131-bit trace (64 bits PC + 64 bits Instruction + 3 bits CTID) for

each core. For the purpose of this thesis and based on the previously presented

architectures from the literature, we will consider traces containing a 64-bit PC and a 64-

bit data address, resulting in a 128-bit trace.

 This architecture requires 128 direct links (128 bits) between the computational

and control planes to access (using taps) the PC (64 bits) and memory-address registers

(64 bits). Those direct links will be accessible at the computational plane’s face to be

bonded with 128 direct links in the control plane’s face, in which wires will carry signals

to the trace compression hardware. No bus is used, because we are proposing a face-to-

face architecture in which the distances between dies are minimal. Even the

Hypertransport bus requires additional implementation costs, and is also slower than

direct links.

 Figure 83 presents the basic layout of the computational plane, showing the

control unit of a microprocessor where PCs are stored, memory address register, cache

memory, clock (used to distribute clock signals for the synchronization of computational

plane with control plane and compression coprocessor with cryptographic coprocessor),

I/O interface, and I/O controller to handle I/O requirements for both planes. We send the

compressed and encrypted traces back to the computational plane to avoid the need for a

new I/O structure in the control plane.

 146

Figure 83. Layout of the computational plane, showing the control unit, memory
address register, cache memory, clock unit, I/O interface, and I/O controller to

handle I/O requirements for both planes.

C. CONTROL PLANE REQUIREMENTS

 The control plane needs to be synchronized with the computational plane to

establish a trusted communication. The main components of the control plane are the

microprocessor interface described in the interface requirements, the compression

coprocessor, and the crypto coprocessor.

 The control plane also uses buffers, since, according to Milenkovic et al., “Internal

buffers ensure that the trace compression proceeds without stalling the processor and

without dropping data” [111].

Computational Plane

I/O Interface

I/O Controller

Clock

Memory

Microprocessor

Control
Unit

PC Register

Memory Address Register

Memory
Bus

Query/control to and from
Microprocessor interface

placed in the Control plane

Clock signals
transferred

to Control plane

Data transfer
to compression

coprocessor

Instruction Register

Compressed/Encrypted
output from crypto

coprocessor

64 64 8 +- 5V +- 5V 32

Read/
Write
signal

 147

D. INTERFACE REQUIREMENTS

 Not only does data need to be transferred between layers, but also clock signals

and query/control signals. We now discuss how to perform this distribution and what

signals will be required.

1. Query/Control Signals

 The query and control signals are managed by a microprocessor interface in the

control plane; this interface receives a clock signal, read/write signal, address/data byte,

and has externally accessible registers to receive/send the signals. The proposed registers

are error, status, interrupt, command, and reset.

 The read/write signal consists of a simple positive/negative signal, positive

meaning write, and negative meaning read. The address/data signals consist of one byte;

the two most significant bits addresse the specific interface register, according to the

signal purpose. The next bit defines whether the signal is for the compressor or the crypto

hardware; and the next five bits are the instruction being transmitted, for a total of 32

query/control instructions for each coprocessor. Figure 84 shows the proposed interface,

and Table 14 has the proposed signals.

 When a write signal is received, the interface sends back an “ack” signal to the

microprocessor and two coprocessors, reads the two address bits, and writes the next six

bits of data to the appropriate register (error, status, interrupt, command or reset). While

receiving the “ack,” the compression hardware constantly monitors those registers for a

starting bit instruction that equals 0, and the crypto hardware monitors for a starting bit

instruction that equals 1. The communications are synchronized by the clock signal and

are shown in Figure 85 when reading signals and in Figure 86 when writing signals to the

control plane.

 148

Figure 84. The query and control signals are managed by a microprocessor interface
in the control plane; this interface receives a clock signal, read/write signal,
address/data byte, and has externally accessible registers to receive/send the

signals. The proposed registers are error, status, interrupt, command, and reset.

Registers

00 Status

01 Error

10 Interrupt

11 Command

clock

address

data

write/read

Compression I/O

Crypto I/O

Microprocessor Interface

Query/Control
to and from

microprocessor
in the

Computational Plane

Read/Write
Signal from

microprocessor
in the

Computational Plane

Clock Signals
transferred from

Computational Plane

 149

QUERY/CONTROL SIGNALS

Signal Description
Binary form of signal

Register register
address

compr/cr
yto data

1 BUSY While data transfer occurs 00 0 00000 Status

2 HOLD HOLD command from
microprocessor 00 0 00001 Status

3 BYPASS No compression/decompression
settled 00 0 00010 Status

4 ERROR Any error from error register 00 0 00011 Status

5 INPUT BUFFER
OVERFLOW Input buffer overflow 01 0 00100 Error

6 ERROR 2 reserved 01 0 00101 Error
7 ERROR 3 reserved 01 0 00110 Error
8 ERROR 4 reserved 01 0 00111 Error

9 ERROR INTERRUPT Reading ERROR on status register
and then error register 10 0 01000 Interrupt

10 DONE INTERRUPT No input data, no error and no hold
signals 10 0 01001 Interrupt

11 HOLD INTERRUPT Reading HOLD on status register 10 0 01010 Interrupt

12 INTERRUPT 4 reserved 10 01011 Interrupt
13 HOLD Hold compression 11 0 01100 Command
14 RESUME Resume compression 11 0 01101 Command

15 START
COMPRESSION Start compression 11 0 01110 Command

16 START
DECOMPRESSION Start decompression 11 0 01111 Command

17 RESET
COMPRESSION

Clear compression buffer and
registers 11 0 10000 Command

18 MODE 1 reserved 11 0 10010 Command

19 MODE 2 reserved 11 0 10010 Command

20 CRYPTO
READY

Manages the synchronization of the
coprocessor in order to receive data.
It also controls the flow of data.

11 1 00000 Command

21 CRYPTO
SEND

1. Manages the synchronization of
the coprocessor in order to send data.
It also controls the flow of data.
2. Used also as a halt signal.

11 1 00001 Command

22 AES_en Selection of AES-128 cryptographic
algorithm. 11 1 00010 Command

23 SHA1_en Selection of SHA_1 cryptographic
algorithm. 11 1 00011 Command

24 SHA512_en Selection of SHA_512 cryptographic
algorithm. 11 1 00100 Command

25 MODE Selection of mode CBC or ECB for
AES-128. 11 1 00101 Command

26 KEY Key indication 11 1 00111 Command

27 RESET CRYPTO Reset signal 11 1 01000 Command

Table 14. Control / Query signals

 150

Figure 85. One: the microprocessor sends a write request (control). Two: the interface
sends back an “Ack” signal to the microprocessor and the two coprocessors. Three:

the interface reads the register address and opens the connection to this register.
Four: data is written into the register to be read by the coprocessors. Each

coprocessor will read and interpret the signal in the respective I/O interface.

T1 T2 T3 T4 T5 T6

+5

0

-5

+5

0

-5

+5

0

-5

+5

0

-5

one

two

three

four

clock

 151

Figure 86. One: the microprocessor sends a read request (query). Two: the interface
sends back an “Ack” signal to the microprocessor. Three: the interface reads the
register address and opens the connection to this register. Four: data is read from

the register by the microprocessor.

one

two

three

four

T1 T2 T3 T4 T5 T6

+5

0

-5

+5

0

-5

+5

0

-5

+5

0

-5

clock

 152

2. Clock Signals

 For the synchronization of the microprocessor and the two coprocessors in the

control plane, we use a clock unit with a three-level buffer clock distribution network.

The buffer system provides the proper current to drive the network capacitance in

conjunction with the maintaining of high quality waveform shapes (to achieve short

transmission times) [112].

E. COMPRESSION HARDWARE PARAMETERS

 Compressing traces in real time inside the chip, even in a 3D architecture, requires

some parameters to be considered, such as trace format, algorithms, and their required

memory (so that the area fits in the control plane), while achieving high speed and a high

compression ratio.

 For the trace format, this thesis will consider traces recording memory access

behavior, where each entry consists of program counter (PC) and the respective data

address of the memory access. Both fields have 64 bits. Our decision is based on the

hardware implementations from the literature described in Chapter III and the importance

of these fields, as described by Milenkovic et al. “Instruction and data address traces are

invaluable for quantitative evaluations of new architectures as well as for workload

characterization, performance tuning, testing, and debugging” [111].

 Our proposed architecture employs content addressable memories (CAM) into all

memories, due to the high speed required, as described in the X-MatchPRO research,

“that uses a CAM-based dictionary where multiple symbols are processed per cycle to

deliver the required performance to avoid becoming a bottleneck in a system operating at

a gigabit per second bandwidth” [28]. In a CAM, multiple comparisons can be made in

parallel, allowing all 128 bits of trace data to be manipulated, given enough space for a

CAM of this size.

 We have selected two-stage compression because multiple-stage compression

hardware has a better compression ratio and higher throughput than single-stage

compression, as explained in Chapter III, due its ability in eliminate unnecessary data

before compressing it with a general-purpose compressor like GZIP. The two stages focus

 153

on different redundancy properties in the traces: prediction methods consider context,

while dictionaries do not. Therefore, we propose to combine both into one architecture.

 The more specialized the compression hardware, the better the compression ratio,

but some level of generality is needed for multipurpose compression hardware. Therefore,

we choose to use a first stage consisting of a compressor that uses the FCM algorithm

dealing with strides (DFCM). “Originally used in software-based trace compression, the

finite-context method (FCM) exploits sequential locality when sets of instructions are

repeatedly executed. Based upon the n number of previously executed instructions, a

prediction of the next instruction is made.” We prefer the DFCM because “DFCM

predictors are often superior to FCM predictors because they warm up faster, make better

use of the hash table, and can predict values that have never been seen before. In addition

to predicting long arbitrary sequences of values that repeat, DFCMs can accurately predict

long arbitrary sequences of offsets (between consecutive values) that repeat” [38].

 For the second stage, we propose the use of GZIP compression hardware,

presented in [114]. See Figure 87. The reasons for this choice are based in the fact that

“there are multiple versions of LZ compression; LZ77, LZ78 and LZW being the most

common. LZ78 and LZW both generate better compression over a finite bit stream

compared to LZ77. However, LZ78 and LZW both utilize static dictionaries. For this type

of design, a look-up table holding the recurring symbols is required. Using a look-up table

to decompress data would result in higher hardware requirements for the LZ78 and LZW

algorithms. On the other hand, LZ77 utilizes a dynamic dictionary and, as a result, has a

smaller impact on the memory required for decompression” [114]. GZIP is also a free

algorithm, and implementations are available in the marketplace. “AHA’s current product

offering includes GZIP hardware compression boards that are based on the PCI-e

standard. The hardware architecture runs GZIP compression orders of magnitude faster

than compression software currently available on the market, (…) the AHA367-PCIe

board has four channels for a total throughput of 1.26 GByte/s” [115].

 154

Figure 87. The stream is initially compressed using an LZ77 algorithm “which
produces flags, literals, match distances and match lengths (After [114]). The

literals and match lengths {0,….,285} are encoded by one Huffman tree, and the
match distances {0,. . . ,29} are encoded with separate Huffman trees: the dynamic,

literal-length Huffman tree (DLLHT) and the dynamic, offset Huffman tree
(DOHT), or the static, literal-length Huffman tree (SLLHT) and the static, offset
Huffman tree (SOHT). Once the two dynamic Huffman trees have been created,
GZIP determines whether compressing the block of data with dynamic or static

Huffman trees will produce a higher compression ratio. If dynamic Huffman
compression is beneficial, then a representation of the DLLHT and the DOHT must
occur at the beginning of the block to be able to reconstruct the Huffman trees for

decompression purposes, and a third dynamic Huffman tree (second-stage
Huffman) needs to be created with the alphabet {0,. . . ,18} to compress the output
of DLLHT and DDHT trees. If a static Huffman tree was used, it is not necessary

to output any tree since the decompressor has access to the static codes” [114].

 The compression hardware has to be able to fetch 128 bits in each clock cycle, and

also includes an input FIFO buffer in order to not stall the microprocessor and absorb

speed variations due to prediction “warm up” times. The I/O interface receives the 6-bit

LZ77
ENCODER

Dynamic Literal-Length Huffman Tree (DLLHT)
Static Literal-Length Huffman Tree (SLLHT)
Dynamic Offset Huffman Tree (DOHT)
Static Offset Huffman Tree (SOHT)

DLLHT

DOHT

LZ77
OUTPUT

DISTRIBUTION
CALCULATION

Second-stage
Huffman

SLLHT SOHT

COMPRESS
DATA

CONTROL UNIT

OUTPUT

INPUT

GZIP HARDWARE

 155

control signals and writes back status signals. It also receives and distributes the single

clock signal required and controls the buffer input.

 Due to the requirements of our proposed crypto coprocessor architecture, we must

slice (i.e., buffer) the output into 32 bits data to be encrypted. At the end of the first

compression cycle, the compression coprocessor sends the “SEND” signal to the crypto

coprocessor via the microprocessor interface and waits for the “READY” signal in order

to start the encryption of these data.

 The compression architecture is presented in Figure 88.

 156

Figure 88. Traces arrive at the compression coprocessor via a FIFO input buffer. All
128 bits are received in parallel for speed reasons. They are received on the first

clock signal after a “start compression” signal is received. Each trace is then sent to
different DFCM compression hardware to be transformed into streams. All DFCM
compressors share the same CAM, which is divided virtually among them. DFCM

predicts the trace based on context and strides. Those predictions are sent to
comparison hardware that compares it with the actual data being processed. If a

match occurs, the address of the prediction is output to the stream. Otherwise, the
uncompressed trace is output together with a miss flag. Predicted and non-predicted
traces are combined into a single stream that is input to the GZIP hardware. After

being compressed, traces are sliced into 32-bit chunks and sent to the crypto
coprocessor.

F. CRYPTO PARAMETERS

 As described in Chapters II and IV, our crypto coprocessor is inspired by the

HSSec cryptographic coprocessor [62]. The cryptographic coprocessor receives the

“SEND” control signal from the compression coprocessor via the microprocessor

interface in order to be ready to accept the compressed data. The cryptographic

DFCM

DFCM

GZIPF
I
F
O

I
N
P
U
T

B
U
F
F
E
R

ACTUAL/PREDICTED COMPARATOR

CONTROL UNIT
&

I/O INTERFACE

32 BIT SLICER

3D COMPRESSION COPROCESSOR

64 64 6 32

 157

coprocessor receives the “SEND” signal at the same time as it receives the 32-bit

compressed data stream. Moreover, the cryptographic coprocessor sends back to the

compression coprocessor the “READY” signal via the microprocessor interface, in order

to handle the synchronization with the compression coprocessor and start receiving

compressed data to be encrypted. The selection of cryptographic algorithm to be used for

the encryption is indicated with the control signals, ‘AES_en” and “MODE” for the AES-

128 algorithm or “SHA1_en” or “SHA512_en” for the SHA1 or SHA512 algorithms.

These signals in addition to the “KEY” and “RESET” signals, are transmitted from the

microprocessor through its interface to the HSSec cryptographic coprocessor. The 32-bit

output is compressed, and the final data stream is handled by the I/O controller and two

I/O interfaces. One of the I/O interfaces is placed in the computational plane, and the

other is placed in the cryptographic coprocessor in the control plane.

Figure 89. The cryptographic coprocessor architecture utilized for the 3DIC (After
[62]).

M
O
D
E

I
N
T
E
R
F
A
C
E

Main Data Bus(64-bits)

128

160

512

Register
File

S boxes

Padding
Unit

I/O INTERFACE

CONTROL
UNIT

KEY SCHEDULE UNIT

AES-128

SHA-1

SHA-512

Send / Ready signal between
Compression / Cryptographic coprocessors

Control / Query signal s between
Microprocessor Interface /Cryptographic
coprocessor

32
Compressed and Encrypted Data
transfer to I/O interface of
the Computational plane

3D CRYPTOGRAPHIC COPROCESSOR

32

Compressed Data
transfer from the
Compression Coprocessor

 158

 The control unit manages data processing and communication with the

compression coprocessor and microprocessor interface. Cryptographic primitives (AES-

128, SHA-1, and SHA-512) are arranged in a parallel orientation and utilize a common

64-bit global data bus. The key scheduler block is used for key expansion and generating

message schedules. The memory block consists of a register file, padding unit, and S-

boxes. The mode interface is responsible for modifying the input to the cryptographic

primitives. The key scheduler performs the RotWord and SubWord transformations

described in Chapter IV. The key scheduler also provides constants needed by the hash

functions: SHA-1 uses a sequence of eighty constant 32-bit words, and SHA-512 uses a

sequence of eighty constant 64-bit words.

 The overall architecture is presented in Figure 89.

Figure 90. Block diagram showing the integration of the computation plane,
microprocessor interface, compression unit, and cryptographic unit into a full

system

3D COMPRESSION COPROCESSOR

128

160

512

I/O INTERFACE

CONTROL
UNIT

KEY SCHEDULE UNIT

3D CRYPTOGRAPHIC COPROCESSOR

Microprocessor Interface

Computational Plane

I/O Interface

I/O Controller

Clock

Memory

Microprocessor

Control
Unit

PC Register

Memory Address Register

Memory
Bus

Instruction Register

 159

VII. RESULTS SUMMARY

A. SUMMARY

 In the previous chapters we explored the architecture and the design of 3DICs. We

presented the advantages and challenges of this emerging technology. Moreover, we

explored the various compression and cryptographic features, as well as related

algorithms and their efficiency and performance. In Chapter VI, we proposed a two-layer

IC, with a computational plane and a compression-encryption plane stacked in a face-to-

face fashion, allowing the information flow from the computational plane, where a

general-purpose processor is placed, to the control plane, where compression-encryption

circuitry resides. The die-to-die communication is achieved using micro-bumps, which

provide enhanced vertical interconnect density and small distance as compared to the

wire-bonded method. The main application that is supported by our proposed 3DIC is one

that performs real-time trace collection, compressing the trace and then encrypting the

compressed trace (data), protecting it from interception.

B. CONCLUSIONS

 The 3DIC containing a general-purpose processor and coprocessors for

compression and encryption provides the following advantages:

• The average interconnection wire length is reduced significantly, as compared to a

traditional two-dimensional (2D) design; therefore, the overall performance of the

system is enhanced.

• Without a bus width limitation for uncompressed data, the proposed architecture is

able to collect more data per unit time using direct links, compress and encrypt it,

and then use a common off-chip bus.

 160

• Due to the decrease in the average interconnection length, which consequently

leads to a reduction in total wiring, we can achieve less power consumption for

our proposed 3DIC.According to Huffmire et al., placing a cryptographic

coprocessor in the control plane and decoupling its operation from the

computational plane is an example of a secure alternate service (SAS), which

provides “a trustworthy enhancement or alternative to the service provided in the

computational plane” [3].

• By placing in the control plane both the compression coprocessor and the crypto

coprocessor (with the output of the compression coprocessor connected to the

input of the crypto coprocessor), we can enable a higher compression ratio than in

the opposite configuration. According to Elbaz et al., if compression is done after

the encryption of data, the ratio of compression will be poor, due to the strong

stochastic properties of the encrypted data. Also, by compressing data first, we can

enhance the encryption performance by significantly reducing the size of the data

to be encrypted. Moreover, compression increases data entropy and therefore

enhances the efficiency of encryption. Finally, it provides another layer of security

to the whole structure [107].

• Another advantage of a 3D approach is that the computational plane can be

manufactured in an untrusted foundry and the control plane can be manufactured

in a trusted foundry. The two dies are joined in a trusted facility. Dual use of the

computational plane provides economic benefits, but requires small changes to the

plane. Fortunately, these changes are amortized over all custom 3D designs that

use the same modified computation plane.

• The reduction in power consumption can allow the use of longer encryption key

lengths (e.g., AES-192 or AES-128). Therefore, we can enhance the security of

the encrypted data without suffering greater power consumption.

C. ANALYTICAL RESULTS SUMMARY

 Although we are not building a hardware prototype, for simulation purposes we

used software to evaluate different algorithms to confirm or refute our architecture

choices. The software collects traces of Linux program execution, applies the DFCM

 161

algorithm in the first compression stage, and applies the GZIP algorithm in the second

compression stage. We measure compression performance in terms of compression ratio.

 To perform this experiment, we used a trace file capturing the memory access

behavior of five Linux applications, generated using the Pin dynamic binary

instrumentation tool. We also used TCGen, which, given the trace file’s format, generates

working C code and can apply four different algorithms and vary each algorithm’s

configurations. In our analysis, we used a total of 112 configurations. TCGen also allows

the use of a second compression stage. In our analysis, we used only GZIP because of the

advantages explained in Chapters III and VI.

 The traces consist three fields: instruction counter, program counter, and data

address. We used only two: the program counter and data address, for the reasons

explained in Chapter VI. The traces were collected from the execution of five Linux

programs—GIMP, Open Office, Opera, Firefox, and Mozilla—using the Pin dynamic

binary instrumentation tool developed by Intel and freely available to the public.

 The algorithms compared are the differential finite-context-method (DFCMx[n]),

finite-context-method predictor (FCMx[n]), stride predictor (ST[n]), and last n values

predictor (LV[n]), all described in Chapter III. We vary n and x for each algorithm from 1

to 7, making all combinations as shown in Table 14.

 The results are expressed in terms of percentage of good predictions, i.e., the

number of times an algorithm can correctly predict the next input. Although this is not the

only factor that affects compression (see Chapter III), the percentage of good predictions

is strongly related to it. All algorithms run independently, and the value unpredictable is

the number of traces that no algorithm could predict.

 Our objective is to find the algorithm that most often yields a correct prediction

(and therefore has a better compression ratio) and use it to guide our selection of

compression hardware for our proposed design

 162

ALGORITHM n
1 2 3 4 5 6 7

DFCM7[n]
DFCM6[n]
DFCM5[n]
DFCM4[n]
DFCM3[n]
DFCM2[n]
DFCM1[n]

FCM7[n]
FCM6[n]
FCM5[n]
FCM4[n]
FCM3[n]
FCM2[n]
FCM1[n]

ST[n]
LV[n]

Table 15. Table used to collect the percentage of good predictions made by different
algorithms: differential finite-context-method (DFCMx[n]), finite-context-

method predictor (FCMx[n]), stride predictor (ST[n]), and last n values
predictor (LV[n]), varying x and n from 1 to 7.

 The method in Table 15 was applied to each of the two fields of each of the five

program traces. Then the results from the same fields in different program traces were

combined and the mean was calculated, resulting in one performance graph for each field.

 163

program/trace field First step Second Step Result

GIMP field one Run 112 algorithms
Compute the mean of each

one of the 112

algorithms/configurations

on field one

Output a graphical

representation

Open Office field one Run 112 algorithms
Opera field one Run 112 algorithms
Firefox field one Run 112 algorithms
Mozilla field one Run 112 algorithms
GIMP field two Run 112 algorithms

Compute the mean of each

one of the 112

algorithms/configurations

on field two

Output a graphical

representation

Open Office field two Run 112 algorithms
Opera field two Run 112 algorithms
Firefox field two Run 112 algorithms
Mozilla field two Run 112 algorithms

Table 16. The methodology of trace compression and analysis was applied to each of
the two fields of each of the five program traces. Then the results from the
same fields of different program traces were combined and the mean was

calculated, resulting in one performance graph for each field.

 The resulting graph in Figure 93 for field one (program counter) shows that

DFCM1[n] is the best algorithm for this specific field, especially when n is greater than

five, with 70% good predictions. If memory is a concern, the best algorithm is DFCM1[n]

with n equal to one, with 53.6% good predictions. This result validates our design choice

of DFCM for the compression hardware, with a performance of, at most, 70% good

predictions. The same is not true of field two, for which the best algorithm is FCM1[n].

The best result occurs when n is equal to four, with 46% good predictions. This result

shows that in general, data addresses do not have a fixed stride and the differential

property of DFCM is not contributing. Therefore, we recommend the use of an FCM

algorithm for data addresses, with a performance of, at most, 46% good predictions.

 164

Figure 91. Program Counter: The DFCM1[n] algorithm is the best algorithm for this
specific field, especially when n is greater than five, with 70% good predictions. If

memory is a concern, the best algorithm is DFCM1[n] with n equal to one, with
53.6% good predictions. This result confirms our design choice of DFCM, with a

performance of, at most, 70% good predictions.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7

dfcm7[n]

dfcm6[n]

dfcm5[n]

dfcm4[n]

dfcm3[n]

dfcm2[n]

dfcm1[n]

fcm7[n]

fcm6[n]

fcm5[n]

fcm4[n]

fcm3[n]

fcm2[n]

fcm1[n]

st[n]

lv[n]

unpredictable

Pe
rc

en
ta

ge
 o

f g
oo

d
pr

ed
ic

tio
ns

(h
ig

he
r b

et
te

r)

Size of the algorithms tables (memory used to store data)
(lower better)

 165

Figure 92. Data Address: The FCM1[n] is the best algorithm for this specific field.

The best result is when n is equal to four, with 46% good predictions. This result
shows that data addresses do not have fixed stride and the differential property of
DFCM is not contributing. Therefore, we recommend using a FCM algorithm for

data addresses, with a performance of, at most, 46% good predictions.

 The resulting output of this phase for each program trace was then sent to the

second compression stage, based on GZIP (see Figure 92), and the final compression ratio

was compared against a single compression stage, consisting only of GZIP (see Table 16),

to determine and quantify whether our two-stage proposal is more efficient than a single-

stage one.

Pe
rc

en
ta

ge
 o

f g
oo

d
pr

ed
ic

tio
ns

(h
ig

he
r b

et
te

r)

Size of the algorithms tables (memory used to store data)
(lower better)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7

dfcm7[X]

dfcm6[X]

dfcm5[X]

dfcm4[X]

dfcm3[X]

dfcm2[X]

dfcm1[X]

fcm7[X]

fcm6[X]

fcm5[X]

fcm4[X]

fcm3[X]

fcm2[X]

fcm1[X]

st[X]

lv[X]

unpredictable

 166

program / trace field First step Second Step Result

GIMP field one

Run best algorithm

plus GZIP

Compare compression ratio of

the two-stage architecture with

one-stage architecture and also

obtain the mean compression

ratio

Output a graphical

representation

Run GZIP

Open Office field one
Run best algorithm

plus GZIP

Run GZIP

Opera field one
Run best algorithm

plus GZIP

Run GZIP

Firefox field one
Run best algorithm

plus GZIP

Run GZIP

Mozilla field One
Run best algorithm

plus GZIP

Run GZIP

GIMP field Two
Run best algorithm

plus GZIP

Compare compression ratio of

the two-stage architecture with

one-stage architecture and

obtain the mean compression

ratio

Output a graphical

representation

Run GZIP

Open Office field Two
Run best algorithm

plus GZIP

Run GZIP

Opera field Two
Run best algorithm

plus GZIP

Run GZIP

Firefox field Two
Run best algorithm

plus GZIP

Run GZIP

Mozilla field Two
Run best algorithm

plus GZIP

Run GZIP

Table 17. The resulting output of the first phase for each program trace was then sent
to the second compression stage, based on GZIP, and the final compression
ratio was compared against a single compression stage, consisting only of

GZIP.

 The mean compression ratio for the five program traces on field one shows that

our two-stage proposal (DFCM + GZIP) has a slight advantage over a single GZIP stage.

 167

Although this performance may not justify the cost of the architecture, using two-stage

compression can speed up the process by pre-compressing traces with a trace-specialized

tool before sending it to a general-purpose compressor; also, the power and memory

required for the general-purpose compression can be reduced, due to the pre-compressing

unit. For the second field, GZIP alone performs better, with a compression ratio of 33:1,

compared with 25:1 for our proposed design. The two graphs show that the performance

of the first stage has to be around 70% (as in the first field) to effectively contribute to the

overall compression ratio.

 The first compression stage’s algorithm has to be carefully chosen and optimized

for the specific trace being compressed; otherwise, it will be better to use a single-stage

approach. A way to deal with this problem is a decision mechanism that observes the first

stage’s prediction performance; it chooses to use either one- or two-stage compression,

based on the percentage of good predictions.

 168

Figure 93. (Upper) Program Counter: The mean compression ratio for the five
program traces, showing that our two-stage proposal (DFCM + GZIP) has a slight

advantage over a single GZIP stage. (Lower) Data Address: The poor percentage of
good predictions in field two reflects in the poor compression ratio in field two for
our proposed design. The first stage’s algorithm has to be carefully chosen in order

to achieve a better compression ratio.

0

20

40

60

80

100

120

140

160

firefox mozilla opera ooffice gimp Mean

Two stage

GZIP

Co
m

pr
es

sio
n

ra
tio

 (h
ig

he
r b

et
te

r)

0

20

40

60

80

100

120

140

160

firefox mozilla opera ooffice gimp Mean

Two stage
GZIP

Co
m

pr
es

sio
n

ra
tio

 (h
ig

he
r b

et
te

r)

 169

D. FUTURE WORK

 In this thesis, we have proposed strawman architecture for a two-die, three-

dimensional processor with compression and crypto coprocessors for trace collection.

Future work in this area will include:

• Additional trace studies: debugging, profiling, and security all have a

unique set of trace requirements.

• Determining the speed of data generated to be compressed/encrypted:

based on the traces collected and the speed of their generation, we can compute the

amount of data per time unit that needs to be compressed and encrypted.

• Defining the best algorithm for each trace in the first stage compression: as

shown in this thesis, the first compression step requires a very specific and optimized

algorithm to achieve a better compression ratio and throughput. Analysis has to be

conducted for each specific trace.

• Implementing a hardware simulation: The simulator is essential to define

throughput and real performance and provides a better understanding of the memory and

area required.

• Determining the throughput of the device: given the amount of data to be

processed and the memory requirements determined by the simulation, the throughput

needs to be enough to process this data.

• Determine the number/area of TSVs, not only for data but also power: this

is an important 3D design decision. Not only does the number of TSVs need to be

calculated, but also the special 3D package requirements need to be determined.

 170

THIS PAGE INTENTIONALLY LEFT BLANK

 171

APPENDIX A DESCRIPTION OF SHA-1 BASED ON THE
FEDERAL INFORMATION PROCESSING STANDARDS

PUBLICATION 180-2

A. OPERATIONS

In order to describe the algorithm, we have to use the following operations on strings of

32 bits [17,18]:

1. bitwise “and”

2. bitwise “or”

3. bitwise addition mod 2

4. flips “0 to 1” and ” 1 to 0 “

5. addition of X and Y mod where X,Y are integers mod

6. The rotate left (circular left shift) operation,

, where x is a w-bit word, and n is an

integer with 0 ≤ n < w. is equivalent to a circular shift (rotation) of

x by n positions to the left.

7. Functions.

SHA-1 uses a sequence of logical functions, , ,…, . Each function ,

where 0 ≤ t < 79, operates on three 32-bit words, x, y, and z, and produces a

32-bit word as an output. The function (x, y, z) is defined as follows [17]:

(1)

8. Constants.

SHA-1 uses a sequence of eighty constant 32-bit words, K0, K1,…, K79, which

are given by [17]:

X Y∧

X Y∨

X Y⊕

X¬

X Y+
322 322

() () ().nROTL x x n x w n= << ∨ >> −

()nROTL x

0f 1f 79f tf

tf

(, ,)

Ch(x, y, z)=(x y) (x z) 0 t 19
Parity(x,y,z)=x y z 20 t 39

Ma

t x y zf =

∧ ⊕ ¬ ∧ ≤ ≤
⊕ ⊕ ≤ ≤

j(x,y,z)=(x y) (x z) (y z) 40 t 59
Parity(x,y,z)=x y z 60 t 79

 ∧ ⊕ ∧ ⊕ ∧ ≤ ≤

⊕ ⊕ ≤ ≤

 172

(2)

 B. PREPROCESSING

Preprocessing takes place before the initiation of the hash-computation process.

This preprocessing stage consists of three steps: 1) padding the message, M, 2) parsing the

padded message into blocks, and 3) determining the initial hash value, [17].

1. Padding the Message

Message M must be padded [17] before the hash-computation stage. Padding the

message M ensures that the padded message is a multiple of 512 bits.

2. Parsing the Padded Message

During this stage [17], the padded message M is parsed into N m-bit blocks before

the hash computation stage. The padded message is parsed into N 512-bit blocks, ,

,…, . Since the 512 bits of the input block can be represented by sixteen 32-bit

words, the first 32 bits of the message block i are denoted as , the next 32 bits are

denoted as , and so on until [17].

3. Setting the Initial Hash Value ()

Before the hash-computation stage [17], the initial hash value, , should be

determined. The size and number of words in are related to the message digest size.

The initial hash value, , consists of the following five 32-bit words, in hex [17]:

= 67452301

= efcdab89

= 98badcfe

5a827999 0 t 19
6ed9eba1 20 t 39

8f1bbcdc 40 t 59
ca62c1d6

tK =

≤ ≤
≤ ≤

≤ ≤
 60 t 79

≤ ≤

(0)H

(1)M
(2)M ()NM

()
0

iM

()
1

iM ()
15

iM

(0)H

(0)H

(0)H

(0)H
(0)

0H

(0)
1H

(0)
2H

 173

= 10325476

= c3d2e1f0

C. SHA-1

SHA-1 may be used to hash a message, M, having a length of bits, where

. The algorithm uses 1) a message schedule of eighty 32-bit words, 2) five

working variables of 32 bits each, and 3) a hash value of five 32-bit words. The final

result of SHA-1 is a 160-bit message digest. The words of the message schedule are

labeled . The five working variables are labeled a, b, c, d, and e. The

words of the hash value are labeled , which will hold the initial hash

value, , replaced by each successive intermediate hash value (after each message

block is processed), , and ending with the final hash value, . SHA-1 also uses

a single temporary word, T. [17]

1. SHA-1 Preprocessing

1. Pad the message, M.

2. Parse the padded message into N 512-bit message blocks, , ,…,

.

3. Set the initial hash value, .

2. SHA-1 Hash Computation

The SHA-1 hash computation uses functions and constants. Addition (+) is

performed modulo . After preprocessing is completed, each message block,

, ,…, , is processed in order, using the following steps: [17]

For i=1 to N:

{

1. Prepare the message schedule, { }:

(0)
3H

(0)
4H

640 2l≤ ≤

0, 1, 79.......,W W W

() () ()
0, 1, 4......,i i iH H H

(0)H

()iH ()NH

(1)M (2)M
()NM

(0)H

322
(1)M (2)M ()NM

tW

 174

2. Initialize the five working variables, a, b, c, d, and e, with the

 hash value:

3. For t = 0 to 79:

{

 }

4. Compute the intermediate hash value :

 }

()

1
3 8 14 16

 0 t 15

(W W W W) 16 t 79

i
t

t
t t t t

M
W

ROTL=

− − − −

 ≤ ≤

⊕ ⊕ ⊕ ≤ ≤

(1)sti −

(1)
0
(1)

1
(1)

2
(1)

3
(1)

4

i

i

i

i

i

a H
b H
c H
d H
e H

−

−

−

−

−

=

=

=

=

=

5

30

() (, ,)

()

t t tT ROTL a f b c d e K W
e d
d c
c ROTL b
b a
a T

= + + + +
=
=

=
=
=

thi ()iH

() (1)
0 0
() (1)

1 1
() (1)

2 2
() (1)

3 3
() (1)

4 4

i i

i i

i i

i i

i i

H a H
H b H
H c H
H d H
H e H

−

−

−

−

−

= +

= +

= +

= +

= +

 175

 After repeating steps one through four a total of N times (i.e., after processing

), the resulting 160-bit message digest of the message, M, is:

.

()NM

() () () () ()
0 1 2 3 4|| || || ||N N N N NH H H H H

 176

THIS PAGE INTENTIONALLY LEFT BLANK

 177

APPENDIX B DESCRIPTION OF SHA-512 BASED ON THE
FEDERAL INFORMATION PROCESSING STANDARDS

PUBLICATION 180-2

A. OPERATIONS

In order to describe the algorithm, we have to use the following operations on

strings of 64 bits [17,18].

1. bitwise “and”

2. bitwise “or”

3. bitwise addition mod 2

4. flips “0 to 1” and ” 1 to 0 “

5. addition of X and Y mod where X,Y are integers mod

6. The right shift operation, , where x is a w-bit word, and n is

an integer, with 0 ≤ n < w.

7. The rotate right operation, , where x is a

w-bit word, and n is an integer, with 0 ≤ n < w. is equivalent to a

circular shift (rotation) of x by n positions to the right.

8. Functions.

SHA-512 use six logical functions, where each function operates on 64-bit

words, which are represented as x, y, and z. The result of each function is a new 64-bit

word [17].

(1),(2)

(3),(4)

X Y∧

X Y∨

X Y⊕

X¬

X Y+
642 642

()nSHR x x n= >>

() () () ()nROTR x x n x w n= >> ∨ << −

() ()nROTR x

Ch(x, y, z)=(x y) (x z)
Parity(x,y,z)=x y z

∧ ⊕ ¬ ∧
⊕ ⊕

{512}
28 34 39

0
{512}

14 18 41

1

() () () ()

() () () ()

ROTR x ROTR x ROTR x

ROTR x ROTR x ROTR x

χ

χ

= ⊕ ⊕

= ⊕ ⊕

∑

∑

 178

(5),(6)

9. Constants

SHA-512 uses a sequence of eighty constant 64-bit words,

. These words represent the first sixty-four bits of the

fractional parts of the cube roots of the first eighty prime numbers. A detailed list of

these constant values in hex format is available in [17].

B. PREPROCESSING

Preprocessing takes place before hash computation begins. This preprocessing

consists of three steps: padding the message, M, parsing the padded message into blocks,

and setting the initial hash value, [16].

1. Padding the Message

The message, M, shall be padded before hash computation begins. The purpose of

this padding is to ensure that the padded message is a multiple of 1024 bits. Suppose that

the length of the message, M, is bits. Append the bit “1” to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation

+1+k=896mod1024. Then append the 128-bit block that is equal to the number expressed

using a binary representation [17].

2. Parsing the Padded Message

After a message has been padded, it must be parsed into N m-bit blocks before the

hash computation can begin. The padded message is parsed into N 1024-bit blocks, ,

,…, . Since the 1024 bits of the input block may be expressed as sixteen 64-bit

words, the first 64 bits of message block i are denoted as , the next 64 bits are

denoted as , and so on, up to [17].

{512} 1 8 7
0
{512} 19 61 6
1

() () () ()

() () () ()

ROTR x ROTR x SHR x
ROTR x ROTR x SHR x

σ χ

σ χ

= ⊕ ⊕

= ⊕ ⊕

{512} {512} {512}
0 1 79, ,..........,K K K

(0)H

(1)M
(2)M ()NM

()
0

iM

()
1

iM ()
15

iM

 179

3. Setting the Initial Hash Value ()

Before hash computation begins for each of the secure hash algorithms, the initial

hash value, , must be set. The size and number of words in depends on the

message digest size. The initial hash value, , shall consist of the following eight 64-

bit words, in hex [17]:

C. SHA-512

SHA-512 may be used to hash a message, M, having a length of l bits, where

. The algorithm uses 1) a message schedule of eighty 64-bit words, 2) eight

working variables of 64 bits each, and 3) a hash value of eight 64-bit words. The final

result of SHA-512 is a 512-bit message digest. The words of the message schedule are

labeled W0, W1,…, W79. The eight working variables are labeled a, b, c, d, e, f, g, and h.

The words of the hash value are labeled , which will hold the initial

hash value, , replaced by each successive intermediate hash value , and ending

with the final hash value, . SHA-512 also uses two temporary words, T1 and T2

[17].

1. SHA-512 Preprocessing

1. Pad the message, M.

2. Parse the padded message into N 512-bit message blocks, , ,…, .

(0)H

(0)H (0)H

(0)H

(0)
0
(0)

1
(0)

2
(0)

3
(0)

4
(0)

5
(0)

6
(0)

7

cbbb9d5dc1059ed8

629a292a367cd507

9159015a3070dd17

152fecd8f70e5939

67332667ffc00b31

8eb44a8768581511

db0c2e0d64f98fa7

47b5481dbefa4fa4

H
H
H
H
H
H
H
H

=

=

=

=

=

=

=

=

1280 2l≤ <

() () ()
0 1 7, ,.......i i iH H H

(0)H ()iH

()NH

(1)M (2)M ()NM

 180

3. Set the initial hash value, .

2. SHA-512 Hash Computation

The SHA-512 hash computation uses functions and constants. Addition (+) is

performed modulo . After preprocessing is completed, each message block, ,

,…, , is processed in order, using the following steps:[17]

For i=1 to N:

{

1. Prepare the message schedule,{ }:

2. Initialize the eight working variables, a, b, c, d, e, f, g, and h, with

the hash value:

3. For t=0 to 79:

{

(0)H

642 (1)M (2)M
()NM

tW

()

{512} {512}
1 2 7 0 15 16

 0 t 15

(W)+ W + (W)+W 16 t 79

i
t

t
t t t t

M
W

σ σ=

− − − −

 ≤ ≤

≤ ≤

(1)sti −

(1)
0
(1)

1
(1)

2
(1)

3
(1)

4
(1)

5
(1)

6
(1)

7

i

i

i

i

i

i

i

i

a H
b H
c H
d H
e H
f H
g H
h H

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=

=

 181

 }

4. Compute the intermediate hash value :

}

After repeating steps one through four a total of N times (i.e., after processing

), the resulting 512-bit message digest of the message, M, is:

{512}
{512}

1
1

{512}

2
0

1

1 2

() (, ,)

() (, ,)

t tT h e Ch e f g K W

T h a Maj a b c

h g
g f
f e
e d T
d c
c b
b a
a T T

= + + + +

= + +

=
=
=
= +
=
=
=
= +

∑

∑

()thi ()iH

() (1)
0 0
() (1)

1 1
() (1)

2 2
() (1)

3 3
() (1)

4 4
() (1)

5 5
() (1)

6 6
() (1)

7 7

i i

i i

i i

i i

i i

i i

i i

i i

H a H
H b H
H c H
H d H
H e H
H f H
H g H
H h H

−

−

−

−

−

−

−

−

= +

= +

= +

= +

= +

= +

= +

= +

()NM

() () () () () () () ()
0 1 2 3 4 5 6 7|| || || || || || ||N N N N N N N NH H H H H H H H

 182

THIS PAGE INTENTIONALLY LEFT BLANK

 183

LIST OF REFERENCES

[1] T. Huffmire, J. Valamehr, T. Sherwood, R. Kastner, T. Levin, T. D.
 Nguyen, and C. Irvine, “Trustworthy System Security through 3D
 Integrated Hardware,” Proceedings of the 2008 IEEE International
 Workshop on Hardware—Oriented Security and Trust (HOST), Anaheim,
 CA, June 2008.

[2] T. Huffmire, T. Levin, C. E. Irvine, T.D Nguyen, J. Valamehr, R. Kastner,
 and T. Sherwood, “High-Assurance System Support through 3D
 Integration,” NPS Technical Report NPS-CS-07-016, November 2007.

[3] T. Huffmire, T. Levin, M. Bilzor, C. E. Irvine, J. Valamehr, M. Tiwari, T.
 Sherwood, R. Kastner,”Hardware trust implications of 3D integration,”
 October 2010 WESS '10: Proceedings of the 5th Workshop on Embedded
 Systems Security.

[4] J. Valamehr, M. Tiwari, T. Sherwood, R. Kastner, T. Huffmire, C. Irvine,
 T. Levin, “Hardware assistance for trustworthy systems through 3D
 integration,” December 2010 ACSAC '10: Proceedings of the 26th Annual
 Computer Security Applications Conference, ACM New York, NY, 2010.

[5] A. Vasudevan, Qu. Ning Qu, A. Perrig, "XTRec: Secure Real-Time
 Execution Trace Recording on Commodity Platforms," System Sciences
 (HICSS), 2011 44th Hawaii International Conference on System Sciences,
 vol., no., pp.1–10, 4–7 Jan. 2011.

[6] G. H. Loh, Y. Xie, B. Black ,”Processor Design in Three-Dimensional
 Die-Stacking Technologies,” In IEEE Micro, vol. 27(3), pp. 31–48, May–
 June, 2007.

[7] C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
 V. J. Reddi, and K. Hazelwood, “Pin: building customized program
 analysis tools with dynamic instrumentation,” In Proceedings Of The 2005
 ACM SIGPLAN Conference on Programming Language Design and
 Implementation (PLDI '05). ACM, New York, NY, USA, 190–200.

[8] D. Salomon, A Concise Introduction to Data Compression, 1938

[9] D. Salomon, G. Motta and D. C. O. N. Bryant, Handbook of Data
 Compression, 2009.

[10] H.-H. Sean Lee, ISCA-35 “Tutorial 3D-IC Microarchitecture,” School of
 Electrical and Computer Engineering Georgia Institute of Technology,
 ISCA 2008.

 184

[11] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M.
 Kandemir. “Design and Management of 3D Chip Multiprocessors Using
 Network-in-Memory,” In 33rd International Symposium on Computer
 Architecture (ISCA), pages 130–141, 2006

[12] S. Das et al. Technology, “Performance, and Computer Aided Design of
 Three-Dimensional Integrated Circuits,” In Proc. International Symposium
 on Physical Design, 2004.

[13] S. Jung et al, “The Revolutionary and Truly 3Dimentional 25F2 SRAM
 Technology with the Smallest S3 Cell, 0.16um2 and SSTFF for Ultra High
 Density SRAM,” In VLSI Technology Digest of Technical Papers, 2004.

[14] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, N. Vijaykrishnan, M. S.
 Yousif, C. R. Das, “A Novel Dimensionally-Decomposed Router for On-
 Chip Communication in 3D Architectures,” ISCA’07, June 9–13, 2007,
 San Diego, California, USA.

[15] Kung, S.David, X. Yuan, "Guest Editors' Introduction: Opportunities and
 Challenges of 3D Integration," Design & Test of Computers, IEEE, vol.
 26, no.5, pp. 4–5, Sept.–Oct. 2009.

[16] J. Joyner, P. Zarkesh-Ha, and J. Meindl, “A stochastic global net-length
 distribution for a three-dimensional system-on-achip (3D-SoC),” In Proc.
 14th Annual IEEE International ASIC/SOC Conference, Sept. 2001.

[17] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
 D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S.
 Shankar, J. Shen, and C. Webb, “Die stacking (3D) microarchitecture,” In
 Proceedings of the 39th Annual IEEE/ACM International Symposium on
 Microarchitecture (MICRO), Orlando, FL, December 2006.

[18] A. J. Menezes, P. C. Van Oorschot and S. A. Vanstone. Handbook of
 Applied Cryptograpy, 1997.

[19] L. C. Washington and W. Trappe, Introduction to Cryptography: With
 Coding Theory, 2002.

[20] D. E. Robling Denning, Cryptography and Data Security, 1982.

[21] B. Schneier, Applied Cryptography, second edition.

[22] NIST, “Introduction to Public Key Technology and the Federal PKI
 Infrastructure,” SP 800-32.

[23] C. S. Walls, “Survey of Security Processors and Accelerators,” ECE 798
 Research Paper.

 185

[24] T. Bell and D. Kulp, (1993), Longest-match string searching for ziv-lempel
 compression. Software: Practice and Experience, 23: 757–771. doi:
 10.1002/spe.4380230705.

[25] I.-C. K. Cheng, J. T. Coffey, and T. N. Mudge, “Analysis of branch
 prediction via data compression,” in Proceedings of the 7th International
 Conference on Architectural Support for Programming Languages and
 Operating Systems, October 1996.

[26] T. Bell, “Better OPM/L Text Compression,” Communications, IEEE
 Transactions on 34(12), pp. 1176–1182. 1986.

[27] M. B. Lin, J. F. Lee and G. E. Jan, “A lossless data compression and
 decompression algorithm and its hardware architecture,” Very Large
 Scale Integration (VLSI) System”s, IEEE Transactions on 14(9), pp. 925–
 936, 2006.

[28] J. L. Núñez and S. Jones, “Gbit/s lossless data compression hardware,”
 Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 11(3),
 pp. 499–510. 2003.

[29] V. Uzelac, A. Milenković, M. Burtscher and M. Milenković, “Real-time
 unobtrusive program execution trace compression using branch predictor
 events,” Presented at Proceedings of the 2010 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, 2010,

[30] M. Milenkovic, A. Milenkovic and M. Burtscher, “Algorithms and
 hardware structures for unobtrusive real-time compression of instruction
 and data address traces,” Presented at Data Compression Conference,
 2007.

[31] A. Milenković and M. Milenković. An efficient single-pass trace
 compression technique utilizing instruction streams. ACM Transactions on
 Modeling and Computer Simulation (TOMACS) 17(1), pp. 2. 2007.

[32] A. Milenkovic and M. Milenkovic, “Exploiting streams in instruction and
 data address trace compression,” Presented at Workload Characterization,
 2003. WWC-6. 2003 IEEE International Workshop, 2003.

[33] M. Burtscher, “VPC3: A fast and effective trace-compression algorithm,”
 Presented at ACM SIGMETRICS Performance Evaluation Review, 2004.

[34] M. Burtscher and M. Jeeradit, “Compressing extended program traces
 using value predictors,” Presented at Parallel Architectures and
 Compilation Techniques, 2003. PACT 2003. Proceedings. 12th
 International Conference on, 2003.

 186

[35] M. Burtscher and B. G. Zorn. Exploring last n value prediction. Presented
 at Parallel Architectures and Compilation Techniques, 1999. Proceedings.
 1999 International Conference on. 1999.

[36] B. Goeman, H. Vandierendonck and K. De Bosschere. Differential FCM:
 Increasing value prediction accuracy by improving table usage efficiency.
 Presented at High-Performance Computer Architecture, 2001. HPCA. the
 Seventh International Symposium on. 2001,

[37] M. Burtscher. An improved index function for (D) FCM predictors. ACM
 SIGARCH Computer Architecture News 30(3), pp. 19-24. 2002.

[38] M. Burtscher and N. B. Sam, “Automatic generation of high-performance
 trace compressors,” Presented at Code Generation and Optimization,
 2005. CGO 2005. International Symposium on, 2005.

[39] M. Burtscher, “TCgen 2.0: A tool to automatically generate lossless trace
 compressors” ACM SIGARCH Computer Architecture News 34(3), pp. 1–
 8, 2006.

[40] IBM, (November 1994). ALDC 1-40S-M Data Sheet. [Online]. Available:
 http://icwic.cn/icwic/data/pdf/cd/cd075/Data%20Compression,%20 Encryp
 tion/a/117440.pdf.

[41] Cotech AHA corporation, (2005). AHA 3580 Product brief. [Online].
 Available: http://www.datasheetarchive.com.

[42] AHA Products Group, [Online]. Available: http://www.aha.com

[43] T. Chilimbi, R. Jones and B. Zorn, “Designing a trace format for heap
 allocation events,” Presented at ACM SIGPLAN Notices, 2000.

[44] A. Agarwal, R. L. Sites and M. Horowitz, “ATUM: A new technique for
 capturing address traces using microcode,” Presented at ACM SIGARCH
 Computer Architecture News, 1986.

[45] R. A. Uhlig and T. N. Mudge, “Trace-driven memory simulation: A
survey,” ACM Computing Surveys (CSUR) 29(2), pp. 128–170, 1997.

[46] J. R. Larus, “Efficient program tracing,” Computer 26(5), pp. 52-61, 1993.

[47] C. F. Kao, S. M. Huang and I. J. Huang, “A hardware approach to real-
time program trace compression for embedded processors,” Circuits and
Systems I: Regular Papers, IEEE Transactions on 54(3), pp. 530–543, 2007.

[48] R. Anderson, M. Bond, J. Clulow, S. Skorobogatov, “Cryptographic
 processors—a survey”.

 187

[49] IBM, IBM 4764 Model 001 PCI-X, Cryptographic Coprocessor. [Online].
 Available:http://www-03.ibm.com/security/cryptocards/pdfs/4764-
 001_PCIX_Data_Sheet.pdf

[50] S. W. Smith, S. Weingart, “Building a high-performance, programmable
 secure coprocessor,” Computer Networks 31 _1999. 831–860.

[51] B. Yee ,J. D. Tygar, “Secure Coprocessors in Electronic Commerce
 Applications,” In Proceedings of the 1st USENIX Workshop on Electronic
 Commerce, July 1995, pp. 155–170.

[52] IBM,Cryptocards,[Online].Available:http://www6.software.ibm.com/softw
 are/cryptocards/IBM%204758.

[53] IBM,SpecificationSheet.[Online].Available:http://www03.ibm.com/secure
 cryptocards.

[54] S. Kent, “Protecting Externally Supplied Software in Small Computers,”
 Ph.D. dissertation, Massachusetts Institute of Technology, 1980.

[55] S. R. White and L. Comerford. “ABYSS: A trusted architecture for
 software protection,” In Proc. of the IEEE Symposium on Security and
 Privacy, 1987.

[56] E. R. Palmer. “An introduction to Citadel, a secure crypto coprocessor for
 workstations,” Technical Report RC18373, IBM T. J. Watson Research
 Center, 1992.

[57] S. R. White, S. H. Weingart, W. C. Arnold, and E. R. Palmer.
 “Introduction to the Citadel Architecture: Security in Physically Exposed
 Environments.” Technical Report RC16672, IBM T. J. Watson Research
 Center, 1991.

[58] J. D. Tygar and B. Yee. Dyad: “A system for using physically secure
 coprocessors,” In Proc. of the Joint Harvard-MIT Workshop on
 Technological Strategies for the Protection of Intellectual Property in the
 Networked Multimedia Environment, April 1993.

[59] J. D. Tygar, B. Yee, and A. Spector. “Strongbox: Support for self-securing
 programs,” In Proc. of the (First) USENIX UNIX Security Workshop,
 August 1988.

[60] B. Yee, “Using Secure Coprocessors.” Ph.D. dissertation, Carnegie Mellon
 Univerisity, May 1994.

 188

[61] B. Yee and J. D. Tygar. “Secure coprocessors in electronic commerce
 applications.” In the 1st USENIX Workshop on Electronic Commerce, July
 1995.

[62] A.P. Kakarountas, H. Michail, C.E. Goutis, C. Efstathiou, “Implementation
 of HSSec: a High-Speed Cryptographic Coprocessor,” 2007.

[63] Douglas R. Stinson, Cryptography Theory and Practice, Third edition,
 Chapman & Hall /CRC.

[64] NIST, SHA Standard, National Institute of Standards and Technology
 (NIST), Secure Hash Standard, FIPS PUB 180-3, [Online].
 Available:www.itl.nist.gov/fipspubs/fip180-3.htm, 2008.

[65] Wadde Trappe, Lawrence C.Washington, Introduction to Cryptography
 with coding theory, Second Edition, Pearson Prentice Hall.

[66] NIST, National Institute of Standards and Technology, standard 197, The
 Advanced Encryption Standard (AES), 2001.

[67] A. Brokalakis, A.P. Kakarountas, C.E. Goutis, “A High- Throughput Area
 Efficient FPGA Implementation of AES-128 Encryption,” in Proc. of
 IEEE 2005 International Workshop on Signal Processing Systems
 (SiPS’05), Athens, Greece, pp. 116-121, Nov. 2–4, 2005.

[68] C.P Su, T.F Lin, C.T Huang, and C.W Wu, “A High-Throughput Low-
 Cost AES Processor,” IEEE Communications Magazine, December 2003.

[69] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular and
 Scalable AES Hardware Architecture,” IEEE Transactions On Computers,
 Vol. 52, No. 4, April 2003.

[70] National Institute of Standards and Technology, Special Publication 800-
 38A, Recommendation for Block Cipher Modes of Operation Methods and
 Techniques,2001 edition.

[71] P. Stanica, Block Ciphers, Excerpt from “Cryptographic Boolean
 Functions and Applications" by T.W. Cusick & P. Stanica.

[72] S.W. Smith, Trusted Computing Platforms:Design and Applications,
 Springer.

[73] B. Schneier, D. Whiting, “A Performance Comparison of the Five AES
 Finalists.”

[74] Crypto++5.6.0Benchmarks.[Online].Available:http://www.cryptopp.com/b
 enchmarks.html

 189

[75] P. Dhawan, “Performance Comparison: Security Design Choices.”
 [Online].Available:http://msdn.microsoft.com/enus/library/ms978415(d=p
 rinter).aspx

[76] NetOverview.
 [Online].Available:http://msdn.microsoft.com/library/zw4w595w.aspx.

[77] B. Gladman, SHA1, SHA2, HMAC and Key Derivation in C.
 [Online]. Available:http://gladman.plushost.co.uk/oldsite/cryptography_tec
 hnology/sha/index.php

[78] A.K.A Tamimi. “Performance Analysis of Data Encryption Algorithms,”
 [Online]. Available:http://www.cs.wustl.edu/~jain/cse56706/encryption_pe
 rf.htm

[79] S. Hirani, “Energy Consumption of Encryption Schemes in Wireless
 Devices,” M.S thesis, University of Pittsburgh, 2003.

[80] N. R. Potlapally, S. Ravi, A.Raghunathan and N. K. Jha, “Analyzing the
 Energy Consumption of Security Protocols,” ISLPED’03, August 25–27,
 2003.

[81] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M.
 Steer, and P. D. Franzon, “Demystifying 3D ICs: The Pros and Cons of
 Going Vertical,” IEEE Design & Test of Computers, 22(6):498–510, 2005.

[82] A. Young. “Perspectives on 3D-IC Technology,” Presentation at the 2nd
 Annual Conference on 3D Architectures for Semiconductor Integration
 and Packaging, June 2005.

[83] A.W Topol et al, “Three dimensional integrated circuits,” IBM Journal of
 R&D ,Volume 50 ,Number 4/5 ,2006

[84] Euronymous, “3D Integration: A Revolution in Design” [Online].
 Available:http://realworldtech.com/page.cfm?ArticleID=RWT050207213.

[85] J. Cong, Jie Wei, and Yan Zhang. “A thermal-driven floorplanning
 algorithm for 3D ICs,” In Proceedings of the 2004 IEEE/ACM
 International Conference on Computer-Aided Design (ICCAD '04). IEEE
 Computer Society, Washington, DC, USA, 306–313.

[86] M. Healy, M. Vittes, M. Ekpanyapong, C. Ballapuram, S.K. Lim, H.-Hsin
 S. Lee, and G.H. Loh. “Microarchitectural floorplanning under
 performance and thermal tradeoff”. In Proceedings of the Conference
 on Design, Automation and Test in Europe: Proceedings (DATE '06).
 European Design and Automation Association, 3001 Leuven, Belgium,
 Belgium, 1288–1293.

 190

[87] P. Falkenstern, Y. Xie, Y.-W. Chang and Y. Wang. “Three-dimensional
 integrated circuits (3D IC) floorplan and power/ground network co-
 synthesis”. In Proceedings of the 2010 Asia and South Pacific Design
 Automation Conference (ASPDAC '10). IEEE Press, Piscataway, NJ, USA,
 169–174.

[88] C.C. Liu et al., ‘‘Bridging the Processor-Memory Performance Gap with
 3D IC Technology,’’ IEEE Design &Test, vol. 22, no. 6, 2005, pp. 556–
 564.

[89] T. Kgil et al., ‘‘PicoServer: Using 3D Stacking Technology to Enable a
 Compact Energy EfficientChip Multiprocessor,’’ Proc. 12th Int’l Conf.
 Architectural Support for Programming Languagesand Operating Systems.

[90] H. Sun, J. Liu, Anigundi, R.S., N. Zheng, J.-Q. Lu, Rose, K., Tong Zhang,
 "3D DRAM Design and Application to 3D Multicore Systems," Design &
 Test of Computers, IEEE, vol.26, no.5, pp.36–47, Sept.–Oct. 2009.

[91] R.E. Matick and S.E. Schuster, “Logic-Based eDRAM: Origins and
 Rationale for Use,” IBM J. Research and Development, vol. 49, no. 1, Jan.
 2005, pp.145–165.

[92] G.H Loh, "3D-Stacked Memory Architectures for Multi-core Processors,"
 Computer Architecture, 2008. ISCA '08. 35th International Symposium on ,
 vol., no., pp.453–464, 21–25 June 2008.

[93] M. Ghosh, H.-H.S. Lee, "Smart Refresh: An Enhanced Memory Controller
 Design for Reducing Energy in Conventional and 3D Die-Stacked
 DRAMs," Microarchitecture, 2007. MICRO 2007. 40th Annual
 IEEE/ACM International Symposium on, vol., no., pp.134–145, 1–5 Dec.
 2007 doi: 10.1109/MICRO.2007.13.

[94] K. Puttaswamy, G. H. Loh “Thermal Analysis of a 3D Die-Stacked High-
 Performance Microprocessor,” GLSVLSI’06, April 30–May 2, 2006,
 Philadelphia, PA, USA.

[95] J. Cong and Y. Zhang. “Thermal via planning for 3D ICs.” In ICCAD ’05:
 Proceedings of the 2005 IEEE/ACM International Conference on
 Computer-Aided Design, pages 745–752, Washington, DC, USA, 2005.
 IEEE Computer Society.

[96] S. S. Sapatnekar, “Addressing thermal and power delivery bottlenecks in
 3D circuits,” ASP-DAC '09: Proceedings of the 2009 Asia and South
 Pacific Design Automation Conference ,January 2009.

[97] H. Hua, C. Mineo, K. Schoenfliess, A. Sule, S. Melamed, R. Jenkal, W.R.
 Davis, "Exploring compromises among timing, power and temperature in

 191

 three-dimensional integrated circuits," Design Automation Conference,
 2006 43rd ACM/IEEE, vol., no., pp.997–1002, 0–0 0.

[98] B. Goplen and S. Sapatnekar.” Efficient thermal placement of standard
 cells in 3D ICs using a force directed approach.” In International
 Conference on Computer Aided Design (ICCAD), pages 86–89, 2003.

[99] W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin.
 “Interconnect and Thermal-aware Floorplanning for 3D Microprocessors.”
 In 7th International Symposium on Quality Electronic Design (ISQED),
 pages 98–104, 2006.

[100] Z. Li, X. Hong, Q. Zhou,S. Zeng, J. Bian, H. Yang,V. Pitchumani, C.-K.
 Cheng, “Integrating Dynamic Thermal Via Planning with 3D
 Floorplanning Algorithm,” ISPD'06, April 9–12, 2006.

[101] G. L. Loh, B. Agrawal, N. Srivastava, L. Sheng-Chih ,T Sherwood, K.
 Banerjee, "A thermally-aware performance analysis of vertically integrated
 (3D) processor-memory hierarchy," Design Automation Conference, 2006
 43rd ACM/IEEE, vol., no., pp.991–996, 0–0 0.

[102] H. S. Lee, K. Chakrabarty, "Test Challenges for 3D Integrated Circuits,"
 Design & Test of Computers, IEEE, vol.26, no.5, pp.26–35, Sept–Oct.
 2009.

[103] A. Grochowski, D. Bhattacharya, T. R. Viswanathan, K. Laker, "Integrated
 circuit testing for quality assurance in manufacturing: history, current
 status, and future trends," Circuits and Systems II: Analog and Digital
 Signal Processing, IEEE Transactions on , vol.44, no.8, pp.610–633, Aug
 1997 doi: 10.1109/82.618036.

[104] X. Wu , P. Falkenstern , K. Chakrabarty , Y. Xie, “Scan-chain design and
 optimization for three-dimensional integrated circuits,” ACM Journal on
 Emerging Technologies in Computing Systems (JETC), v.5 n.2, p.1–26,
 July 2009.

[105] P.Emma, E. Kursun, "Opportunities and Challenges for 3D Systems and
 Their Design," Design & Test of Computers, IEEE, vol.PP, no.99, pp.1, 0
 doi: 10.1109/MDT.2009.98.

[106] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M.
 Steer, and P. D. Franzon,”Demystifying 3D ICs: The Pros and Cons of
 Going Vertical,” IEEE Design & Test of Computers, 22(6):498–510, 2005.

[107] R.Elbaz, L.Torres, G.Sassatelli, P.Guillemin, C.Anguille, M.Bardouillet,
 C.Buatois, J.B. Rigaud, “Hardware Engines for Bus Encryption: a Survey
 of Existing Techniques,” 2005.

 192

[108] Intel, Intel® Core™ i7-3930K Processor Specifications. 2012. [Online].
 Available: http://www.intel.com.

[109] S. Mysore, B. Agrawal, N.Srivastava, S.-C. Lin, K. Banerjee/Timothy
 Sherwood “Introspective 3D Chips”.

[110] L. Null and J. Lobur, Computer organization and architecture.

[111] M. Milenkovic, A. Milenkovic and M. Burtscher “Algorithms and
 Hardware Structures for unobtrusive Real-Time Compression of
 Instruction and Data Address Traces”.

[112] E.G.Friedman, “Clock Distribution Networks in Synchronous Digital
 Integrated Circuits,” In Proceedings Of the IEEE,vol.89, No 5, May 2001.

[113] B. Mihajlović and Ž. Žilić, “Real-time address trace compression for
 emulated and real system-on-chip processor core debugging,” In
 Proceedings of the 21st edition of the great lakes symposium on Great
 lakes symposium on VLSI (GLSVLSI '11). ACM, New York,
 NY,USA,331-336.DOI=10.1145/1973009.1973075.

[114] S. Rigler, “FPGA-Based Lossless Data Compression Using GNU Zip,”
 M.S thesis, Electrical and Computer Engineering Waterloo, Ontario,
 Canada, 2007.

[115] T. Summers “Compressing Log Files with Hardware Based GZIP,” March
 29, 2010 , AHA Products Group of Comtech EF Data Corporation.

 193

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman
Department of Computer Science
Naval Postgraduate School
Monterey, California

4. Professor Ted Huffmire

Department of Computer Science
Naval Postgraduate School
Monterey, California

5. Professor Timothy. E. Levin
Department of Computer Science
Naval Postgraduate School
Monterey, California

6. Hellenic Navy General Staff

Athens, Greece

7. Embassy of Greece

 Office of Naval Attaché
 Washington, District of Columbia

8. Dimitrios Megas

Naval Postgraduate School
Monterey, California

9. Diretoria de Telecomunicações da Marinha
 Centro, Rio de Janeiro—Brazil

10. Brazilian Naval Commision

 Washington, DC

11. Kleber Leandro Pizolato Someira

Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	THESIS
	I. INTRODUCTION
	A. MOTIVATION
	B. SCOPE OF THESIS
	c. thesis outline

	ii. BACKGROUND
	A. INTRODUCTION
	B. 3D IC TECHNOLOGY
	1. Main Technologies for Manufacturing 3DICs
	2. Advantages of 3DIC Technology
	3. Challenges of 3D IC technology

	C. COPROCESSORS
	D. DATA COMPRESSION
	1. Compression
	2. Dictionary methods
	a. Adaptive Dictionary
	b. Sliding Window Dictionary
	c. Circular Queue Dictionary
	d. Binary Tree Dictionary

	3. Statistical Methods
	a. Huffman Coding
	b. Adaptive Huffman
	c. Arithmetic Coding
	d. Adaptive Arithmetic Coding

	E. CRYPTOGRAPHY
	1. Definition of Cryptography, Basic Principles and Description of General Aspects Related to Cryptography.
	2. Cryptographic Services
	3. A Basic Scenario of Cryptographic Application
	4. General Description of Cryptographic Algorithms (Symmetric, Asymmetric, Hash Functions)
	a. Symmetric, Private-Key Encryption
	b. Stream and Block Ciphers
	c. Public (Asymmetric) Key Encryption
	d. Hashing Functions

	III. compression
	A. INTRODUCTION
	B. COMPRESSION
	C. COMPRESSION ALGORITHMS
	D. STRING COMPRESSION
	E. DICTIONARY METHODS
	1. Lempel Ziv
	2. LZ77
	3. LZR
	4. LZSS
	5. LZB
	6. GZIP
	7. LZ78
	8. LZW
	9. LZC (UNIX Compress)
	10. LZT
	11. LZMW
	12. LZFG
	13. ALDC
	14. Dictionary Summary

	F. STATISTICAL METHODS
	1. Prediction
	2. PPM
	3. PPMA
	4. PPMB
	5. PPMC
	6. VPC3
	7. TCgen

	G. FURTHER DISCUSSION
	1. Combining
	2. Data-Compression Patents
	3. Trace Compression

	H. 2D COMPRESSION HARDWARE
	1. Parallel Dictionary LZW Plus Adaptive Huffman [27]
	2. X-MatchPRO [28].
	3. Branch-Predictor Compression Plus Variable-Length Code [29]
	4. Stream-Based Compression (SBC) [30], [31]
	5. Reduction, Encoding Plus LZ [47]
	6. IBM/AHA [40][41]

	I. USAGE SCENARIOS
	J. PERFORMANCE NUMBERS

	IV. CRYPTOGRAPHY
	A. INTRODUCTION
	B. Description of a cryptographic coprocessor
	C. The HSSec High-Speed Cryptographic coprocessor
	1. SHA-1 algorithm
	2. SHA-512 algorithm
	3. AES-128 algorithm
	a. AES-128 Transformations
	b. AES-128 Key Expansion Process
	c. Electronic Codebook (ECB) and Cipher Block Chaining (CBC) Modes

	4. The HSSec High-Speed Cryptographic Coprocessor Architecture
	5. Use Scenario
	6. Cryptographic Algorithm Performance
	a. SHA-1 and SHA-512 Performance
	b. AES-128 Performance

	V. 3D INTEGRATED CIRCUIT ARCHITECTURE
	a. introduction
	B. FACTORS IN 3D ARCHITECTURE
	1. Bonding: Interconnection Methods
	2. Manufacturing Methods
	a. Face-to-Face Bonding
	b. Face-to-Back Bonding

	c. FLOORPLAN, POWER, AND GROUND NETWORK
	D. MEMORY
	E. THERMAL
	f. test

	VI. The IDEAL 3D SYSTEM
	A. INTRODUCTION
	B. OPTIONS FOR STRAWMAN-DESIGN COMPUTATIONal PLANE
	1. Performance
	2. Traces

	C. CONTROL PLANE REQUIREMENTS
	D. INTERFACE REQUIREMENTS
	1. Query/Control Signals
	2. Clock Signals

	E. COMPRESSION HARDWARE PARAMETERS
	F. CRYPTO PARAMETERS

	VII. RESULTS SUMMARY
	A. Summary
	B. Conclusions
	C. ANALYTICAL RESULTS SUMMARY
	D. FUTURE WORK

	Appendix A Description of SHA-1 based on the Federal Information Processing Standards Publication 180-2
	A. OPERATIONS
	B. PREPROCESSING
	1. Padding the Message
	2. Parsing the Padded Message
	3. Setting the Initial Hash Value ()

	c. SHA-1
	1. SHA-1 Preprocessing
	2. SHA-1 Hash Computation

	Appendix B Description of SHA-512 based on the Federal Information Processing Standards Publication 180-2
	a. OPERATIONS
	b. PREPROCESSING
	1. Padding the Message
	2. Parsing the Padded Message
	3. Setting the Initial Hash Value ()

	C. sha-512
	1. SHA-512 Preprocessing
	2. SHA-512 Hash Computation

	LIST OF REFERENCES
	[94] K. Puttaswamy, G. H. Loh “Thermal Analysis of a 3D Die-Stacked High- Performance Microprocessor,” GLSVLSI’06, April 30–May 2, 2006, Philadelphia, PA, USA.
	[102] H. S. Lee, K. Chakrabarty, "Test Challenges for 3D Integrated Circuits," Design & Test of Computers, IEEE, vol.26, no.5, pp.26–35, Sept–Oct. 2009.
	INITIAL DISTRIBUTION LIST

